Log in

Ultrasonic-assisted synthesis of zeolite/activated carbon@MnO2 composite as a novel adsorbent for treatment of wastewater containing methylene blue and brilliant blue

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In this study, zeolite/activated carbon@MnO2 composite was used as a novel adsorbent to eliminate methylene blue (MB) and brilliant blue (BB) dyes from aqueous media. To this end, activated carbon (AC) was produced by Ziziphus Spina-Christi leaves and then used to synthesize zeolite/AC@MnO2 composite. Various analyses such as BET, SEM, EDX, Map, FTIR, and XRD were performed to determine the surface features of the above composite. BET analysis indicated that the aforementioned composite has a mesoporous structure. Also, the best conditions for the adsorption of MB and BB dyes were obtained at pH of 9 and 2, temperature of 25 °C, adsorbent dosage of 1 and 2 g/L, initial dye concentration of 10 mg/L, and contact time of 40 and 60 min, respectively. Under optimal conditions, the utmost removal efficiency of MB and BB dyes using the zeolite/AC@MnO2 composite was 98.43% and 96.54%, respectively, indicating significant adsorption efficiencies. Moreover, the utmost adsorption capacity of MB and BB dyes was 67.56 and 66.22 mg/g, respectively. Furthermore, intraparticle and film diffusion mechanisms were very important in the adsorption process. Besides, thermodynamic and equilibrium studies indicated that the adsorption process is exothermic, physical, and spontaneous. Generally, the aforementioned composite has a significant adsorption capacity and can be a suitable adsorbent to eliminate cationic dyes from industrial effluents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets produced during the present study are not publicly available due to ongoing research but are available upon reasonable request from the corresponding author.

References

  • Abdel-GhANi, N. T., El-Chaghaby, G. A., Rawash, E. S. A., & Lima, E. C. (2017). Adsorption of coomassie brilliant blue r-250 dye onto novel activated carbon prepared from nigella sativa l. waste: Equilibrium, kinetics and thermodynamics running title: Adsorption of brilliant blue dye onto nigella sativa l. waste activated carbon. Journal of the Chilean Chemical Society62(2), 3505–3511.

  • Ahmadi, A., Foroutan, R., Esmaeili, H., & Tamjidi, S. (2020). The role of bentonite clay and bentonite clay@ MnFe2O4 composite and their physico-chemical properties on the removal of Cr (III) and Cr (VI) from aqueous media. Environmental Science and Pollution Research, 27(12), 14044–14057.

    Article  CAS  Google Scholar 

  • Arora, C., Soni, S., Sahu, S., Mittal, J., Kumar, P., & Bajpai, P. K. (2019). Iron based metal organic framework for efficient removal of methylene blue dye from industrial waste. Journal of Molecular Liquids, 284, 343–352.

    Article  CAS  Google Scholar 

  • Boushehrian, M. M., Esmaeili, H., & Foroutan, R. (2020). Ultrasonic assisted synthesis of Kaolin/CuFe2O4 nanocomposite for removing cationic dyes from aqueous media. Journal of Environmental Chemical Engineering, 8, 103869.

  • Chen, R., Cheng, Y., Wang, P., Wang, Y., Wang, Q., Yang, Z., Tang, C., **ang, S., Luo, S., Huang, S., & Su, C. (2021). Facile synthesis of a sandwiched Ti3C2Tx MXene/nZVI/fungal hypha nanofiber hybrid membrane for enhanced removal of Be (II) from Be (NH2) 2 complexing solutions. Chemical Engineering Journal 421, 129682.

  • Choi, H. J., Yu, S. W., & Kim, K. H. (2016). Efficient use of Mg-modified zeolite in the treatment of aqueous solution contaminated with heavy metal toxic ions. Journal of the Taiwan Institute of Chemical Engineers, 63, 482–489.

    Article  CAS  Google Scholar 

  • Dai, Q., Shen, K., Deng, W., Cai, Y., Yan, J., Wu, J., Guo, L., Liu, R., Wang, X., & Zhan, W. (2021). HCl-tolerant H x PO4/RuO x–CeO2 catalysts for extremely efficient catalytic elimination of chlorinated VOCs. Environmental Science and Technology, 55(6), 4007–4016.

    Article  CAS  Google Scholar 

  • Ergene, A., Ada, K., Tan, S., & Katırcıoğlu, H. (2009). Removal of Remazol Brilliant Blue R dye from aqueous solutions by adsorption onto immobilized Scenedesmus quadricauda: Equilibrium and kinetic modeling studies. Desalination, 249(3), 1308–1314.

    Article  CAS  Google Scholar 

  • Esmaeili, H., & Foroutan, R. (2019). Adsorptive behavior of methylene blue onto sawdust of sour lemon, date palm, and eucalyptus as agricultural wastes. Journal of Dispersion Science and Technology, 40(7), 990–999.

    Article  CAS  Google Scholar 

  • Esmaeili, H., Foroutan, R., Jafari, D., & Rezaei, M. A. (2020a). Effect of interfering ions on phosphate removal from aqueous media using magnesium oxide@ ferric molybdate nanocomposite. Korean Journal of Chemical Engineering, 37(5), 804–814.

    Article  Google Scholar 

  • Esmaeili, H., Mousavi, S. M., Hashemi, S. A., Chiang, W. H. & Abnavi, S. A. (2020b). Activated carbon@ MgO@ Fe 3 O 4 as an efficient adsorbent for As (III) removal. Carbon Letters.

  • Etemadinia, T., Allahrasani, A., & Barikbin, B. (2019). ZnFe 2 O 4@ SiO 2@ Tragacanth gum nanocomposite: Synthesis and its application for the removal of methylene blue dye from aqueous solution. Polymer Bulletin, 76(12), 6089–6109.

    Article  CAS  Google Scholar 

  • Foroutan, R., Ahmadlouydarab, M., Ramavandi, B., & Mohammadi, R. (2018). Studying the physicochemical characteristics and metals adsorptive behavior of CMC-g-HAp/Fe3O4 nanobiocomposite. Journal of Environmental Chemical Engineering, 6(5), 6049–6058.

    Article  CAS  Google Scholar 

  • Ge, D., Yuan, H., **ao, J., & Zhu, N. (2019). Insight into the enhanced sludge dewaterability by tannic acid conditioning and pH regulation. Science of the Total Environment, 679, 298–306.

    Article  CAS  Google Scholar 

  • Gil, A., Taoufik, N., García, A. M., & Korili, S. A. (2019). Comparative removal of emerging contaminants from aqueous solution by adsorption on an activated carbon. Environmental Technology, 40(23), 3017–3303.

    Article  CAS  Google Scholar 

  • Gotvajn, A. Z., & Pavko, A. (2015). Perspectives on biological treatment of sanitary landfill leachate. Wastewater Treatment Engineering, 13, 31–39.

    Google Scholar 

  • Guan, Q., Zeng, G., Song, J., Liu, C., Wang, Z., & Wu, S. (2021). Ultrasonic power combined with seed materials for recovery of phosphorus from swine wastewater via struvite crystallization process. Journal Environment Management 293, 112961.

  • Hameed, B. H. (2009). Evaluation of papaya seeds as a novel non-conventional low-cost adsorbent for removal of methylene blue. Journal of Hazardous Materials, 162(2–3), 939–944.

    Article  CAS  Google Scholar 

  • Hameed, 5. 8. B., Krishni, R. R., & Sata, S. A. (2009). A novel agricultural waste adsorbent for the removal of cationic dye from aqueous solutions. Journal of Hazardous Materials, 162(1)305-311.

  • He, L., Li, M. X., Chen, F., Yang, S. S., Ding, J., Ding, L., & Ren, N. Q. (2021). Novel coagulation waste-based Fe-containing carbonaceous catalyst as peroxymonosulfate activator for pollutants degradation: Role of ROS and electron transfer pathway. Journal Hazardous Material, 417(126113).

  • He, L., Yang, C., Ding, J., Lu, M. Y., Chen, C. X., Wang, G. Y., Jiang, J. Q., Ding, L., Liu, G. S., Ren, N. Q., & Yang, S. S. (2022). Fe, N-doped carbonaceous catalyst activating periodate for micropollutant removal: Significant role of electron transfer. Applied Catalysis B Environmental 303(120880).

  • Jain, C. K., Kumar, A., & Izazy, M. H. (2009). Color removal from paper mill effluent through adsorption technology. Environmental Monitoring and Assessment, 149(1), 343–348.

    Article  CAS  Google Scholar 

  • Jawad, A. H., Abdulhameed, A. S., Surip, S. N., & Sabar, S. (2020). Adsorptive performance of carbon modified chitosan biopolymer for cationic dye removal: Kinetic, isotherm, thermodynamic, and mechanism study. International Journal of Environmental Analytical Chemistry.

  • Krasnova, T. A., Belyaeva, O. V., Gorelkina, A. K., Timoshchuk, I. V., Gora, N. V., & Golubeva, N. S. (2020). Trichloroethylene adsorption from aqueous solutions by activated carbons. Carbon Letters, 30(3), 281–287.

    Article  Google Scholar 

  • Kulkarni, M. R., Bhagyalakshmi, C., Anand, D., & Herle, R. N. (2018). Removal of Remazol Brilliant Blue dye from aqueous solutions using water hyacinth root powder. Desalination and Water Treatment, 122, 331–338.

    Article  CAS  Google Scholar 

  • Ladnorg, S., Junior, N. L., Dall, P., Domingos, D. G., Magnus, B. S., Wichern, M., Gehring, T., & da Costa, R. H. R. (2019). Alginate-like exopolysaccharide extracted from aerobic granular sludge as biosorbent for methylene blue: Thermodynamic, kinetic and isotherm studies. Journal of Environmental Chemical Engineering7(3), 103081.

  • Li, G., Huang, S., Zhu, N., Yuan, H., Ge, D., & Wei, Y. (2021a). Defect-rich heterojunction photocatalyst originated from the removal of chloride ions and its degradation mechanism of norfloxacin. Chemical Engineering Journal, 421, 127852.

  • Li, G., Huang, S., Zhu, N., Yuan, H., & Ge, D. (2021b). Near-infrared responsive upconversion glass-ceramic@ BiOBr heterojunction for enhanced photodegradation performances of norfloxacin. Journal Hazardous Material, 403, 123981.

  • Liu, J., Wang, Y., Fang, Y., Mwamulima, T., Song, S., & Peng, C. (2018). Removal of crystal violet and methylene blue from aqueous solutions using the fly ash-based adsorbent material-supported zero-valent iron. Journal of Molecular Liquids, 250, 468–476.

    Article  CAS  Google Scholar 

  • Ma, Z., Zhu, L., **ng, S., Wu, Y., & Gao, Y. (2013). Facile synthesis of Mn–Co oxide with a hierarchical porous structure for heavy metal removal. Materials Letters, 108, 261–263.

    Article  CAS  Google Scholar 

  • Mittal, A. (2006). Use of hen feathers as potential adsorbent for the removal of a hazardous dye, Brilliant Blue FCF, from wastewater. Journal of Hazardous Materials, 128(2–3), 233–239.

    Article  CAS  Google Scholar 

  • Moreno-López, A. Y., González-López, M. E., Manríquez-González, R., González-Cruz, R., Pérez-Fonseca, A. A., Gómez, C., Flores-Cano, J. V., & Robledo-Ortíz, J. R. (2019). Evaluation of the Cr (VI) adsorption performance of xanthate polysaccharides supported onto agave fiber-LDPE foamed composites. Water, Air, & Soil Pollution, 230(6), 1–21.

    Article  Google Scholar 

  • Nwankwoala, H. O., Harry, M. T., & Warmate, T. (2020). Assessing aquifer vulnerability and contaminant plume at artisanal refining sites in parts of Okrika and Ogu-Bolo local government areas, rivers state. Nigeria Water Conservation Management, 4(2):68–72.

    Article  Google Scholar 

  • Oladimeji, T. E., Odunoye, B. O., Elehinafe, F. B., Oyinlola, R. O., & Olayemi, A. O. (2021). Production of activated carbon from sawdust and its efficiency in the treatment of sewage water. Heliyon, 7(1), 05960.

    Article  Google Scholar 

  • Pan, D., & Chen, H. (2021). Border pollution reduction in China: The role of livestock environmental regulations. China Economic Review, 69(101681).

  • Pathania, D., Sharma, S., & Singh, P. (2017). Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arabian Journal of Chemistry, 10, 1445–1451.

    Article  Google Scholar 

  • Prasad, R., & Yadav, K. D. (2020). Use of response surface methodology and artificial neural network approach for methylene blue removal by adsorption onto water hyacinth. Water Conservation Management, 4, 73–79.

    Article  Google Scholar 

  • Sajil Kumar, P. J. (2020). Hydrogeochemical and multivariate statistical appraisal of pollution sources in the groundwater of the lower Bhavani River basin in Tamil Nadu. Geology Ecology Landscape, 4(1), 40–51.

    Article  Google Scholar 

  • Samal, K., Das, C., & Mohanty, K. (2017). Application of saponin biosurfactant and its recovery in the MEUF process for removal of methyl violet from wastewater. Journal of Environmental Management, 203, 8–16.

    Article  CAS  Google Scholar 

  • Santana, A. J., dos Santos, W. N., Silva, L. O., & das Virgens, C. F. (2016). Removal of mercury (II) ions in aqueous solution using the peel biomass of Pachira aquatica Aubl: Kinetics and adsorption equilibrium studies. Environmental Monitoring and Assessment, 188(5), 293.

    Article  Google Scholar 

  • Sartape, A. S., Mandhare, A. M., Jadhav, V. V., Raut, P. D., Anuse, M. A., & Kolekar, S. S. (2017). Removal of malachite green dye from aqueous solution with adsorption technique using Limonia acidissima (wood apple) shell as low cost adsorbent. Arabian Journal of Chemistry, 10, 3229–3238.

    Article  Google Scholar 

  • Singh, K. P., Gupta, S., Singh, A. K., & Sinha, S. (2011). Optimizing adsorption of crystal violet dye from water by magnetic nanocomposite using response surface modeling approach. Journal of Hazardous Materials, 186(2–3), 1462–1473.

    Article  CAS  Google Scholar 

  • Tamjidi, S., Esmaeili, H., & Moghadas, B. K. (2019). Application of magnetic adsorbents for removal of heavy metals from wastewater: a review study. Materials Research Express6(10), 102004.

  • Toohi, H. T. A. S., Rabeea, M. A., Abdullah, J. A., & Muslim, R. F. (2020). Synthesis and characterization activated carbon using a mix (asphalt-polypropylene waste) for novel azo dye (HNDA) adsorption. Carbon Letters.

  • Toumi, K. H., Benguerba, Y., Erto, A., Dotto, G. L., Tiar, C., Nacef, S., Amrane, A., & Ernst, B. (2019). Efficient removal of cationic dyes from aqueous solutions using the low-cost Algerian olive cake waste adsorbent. JOM Journal of the Minerals Metals and Materials Society, 71(2), 791–800.

    Article  CAS  Google Scholar 

  • Vitela-Rodriguez, A. V., & Rangel-Mendez, J. R. (2013). Arsenic removal by modified activated carbons with iron hydro (oxide) nanoparticles. Journal of Environmental Management, 114, 225–231.

    Article  CAS  Google Scholar 

  • Wang, J., & Zhang, W. (2021). Evaluating the adsorption of Shanghai silty clay to Cd (II), Pb (II), As (V), and Cr (VI): Kinetic, equilibrium, and thermodynamic studies. Environmental Monitoring and Assessment, 193(3), 1–23.

    Article  Google Scholar 

  • Wijesinghe, D. T. N., Dassanayake, K. B., Sommer, S. G., Jayasinghe, G. Y., Scales, J., & P., & Chen, D. (2016). Ammonium removal from high-strength aqueous solutions by Australian zeolite. Journal of Environmental Science and Health, Part A, 51(8), 614–625.

    CAS  Google Scholar 

  • **, M., Fu, X., Yang, H., He, C., Fu, L., Cheng, X., & Guo, J. (2021). Predicted a honeycomb metallic BiC and a direct semiconducting Bi2C monolayer as excellent CO2 adsorbents. China Chemical Letter.

  • Yang, S. S., Yu, X. L., Ding, M. Q., He, L., Cao, G. L., Zhao, L., Tao, Y., Pang, J. W., Bai, S. W., Ding, J., & Ren, N. Q. (2021). Simulating a combined lysis-cryptic and biological nitrogen removal system treating domestic wastewater at low C/N ratios using artificial neural network. Water Reservation, 189(116576).

  • Yeganeh, G., Ramavandi, B., Esmaeili, H., & Tamjidi, S. (2019). Dataset of the aqueous solution and petrochemical wastewater treatment containing ammonia using low cost and efficient bio-adsorbents. Data in brief26(104308).

  • Zhang, L., Wang, L., Zhang, Y., Wang, D., Guo, J., Zhang, M., & Li, Y. (2021). The performance of electrode ultrafiltration membrane bioreactor in treating cosmetics wastewater and its anti-fouling properties. Environment Reservation, 206(112629).

  • Zhao, B., **ao, W., Shang, Y., Zhu, H., & Han, R. (2017). Adsorption of light green anionic dye using cationic surfactant-modified peanut husk in batch mode. Arabian Journal of Chemistry, 10, 3595-S3602.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Esmaeili.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shojaei, M., Esmaeili, H. Ultrasonic-assisted synthesis of zeolite/activated carbon@MnO2 composite as a novel adsorbent for treatment of wastewater containing methylene blue and brilliant blue. Environ Monit Assess 194, 279 (2022). https://doi.org/10.1007/s10661-022-09930-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-09930-9

Keywords

Navigation