Log in

Securing blockchain-based crowdfunding platforms: an integrated graph neural networks and machine learning approach

  • Published:
Electronic Commerce Research Aims and scope Submit manuscript

Abstract

Blockchain-based crowdfunding is a form of crowdfunding that uses blockchain technology to facilitate the fundraising process. Blockchain technology provides a decentralized, transparent, and secure platform for crowdfunding by allowing the creation of smart contracts and the issuance of digital tokens. However, Blockchain-based crowdfunding systems suffer from a few security issues, such as the possibility of fraud, risk assessment, smart contracts bugs, and cyber-attacks. This paper proposes integrating artificial intelligence models to prevent smart contract vulnerabilities and anomaly detection. Thus, we will deploy Graph Neural Networks models to protect Blockchain-based crowdfunding platforms from smart contracts-based attacks such as reentrancy and infinite loop attacks. Then, we will use a machine learning model for anomaly detection and prevent attacks such as advanced persistent threats, malware, and distributed denial of service attacks. An experimental study is conducted in a real crowdfunding platform to prove the feasibility of our framework and to draw lessons from the real-life implementation of such models. Our results show that our approach can accurately identify both normal and abnormal traffic and classify correctly specific types of attacks. We also evaluate the performance of our framework using various evaluation metrics to ensure its effectiveness in detecting anomalies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Moritz, A., & Block, J. H. (2016). Crowdfunding: A literature review and research directions. Crowdfunding in Europe (pp. 25–53). Springer.

    Chapter  Google Scholar 

  2. Frydrych, D., Bock, A. J., Kinder, T., & Koeck, B. (2014). Exploring entrepreneurial legitimacy in reward-based crowdfunding. Venture capital, 16(3), 247–269.

    Article  Google Scholar 

  3. Mochkabadi, K., & Volkmann, C. K. (2020). Equity crowdfunding: A systematic review of the literature. Small Business Economics, 54(1), 75–118.

    Article  Google Scholar 

  4. Salido-Andres, N., Rey-Garcia, M., Alvarez-Gonzalez, L. I., & Vazquez-Casielles, R. (2021). Map** the field of donation-based crowdfunding for charitable causes: systematic review and conceptual framework. VOLUNTAS: International Journal of Voluntary and Nonprofit Organizations, 32(2), 288–302.

    Article  Google Scholar 

  5. Montgomery, N., Squires, G., & Syed, I. (2018). Disruptive potential of real estate crowdfunding in the real estate project finance industry: A literature review. Property Management.

  6. Zhao, Y., Harris, P., & Lam, W. (2019). Crowdfunding industry—History, development, policies, and potential issues. Journal of Public Affairs, 19(1), e1921.

    Article  Google Scholar 

  7. Cumming, D., Meoli, M., & Vismara, S. (2021). Does equity crowdfunding democratize entrepreneurial finance? Small Business Economics, 56(2), 533–552.

    Article  Google Scholar 

  8. Mollick, E., & Robb, A. (2016). Democratizing innovation and capital access: The role of crowdfunding. California management review, 58(2), 72–87.

    Article  Google Scholar 

  9. Belhadi, A., Kamble, S., Benkhati, I., Gupta, S., & Mangla, S. K. (2023). Does strategic management of digital technologies influence electronic word-of-mouth (eWOM) and customer loyalty? Empirical insights from B2B platform economy. Journal of Business Research, 156, 113548.

    Article  Google Scholar 

  10. Madsen, J. M., & McMullin, J. L. (2020). Economic consequences of risk disclosures: Evidence from crowdfunding. The Accounting Review, 95(4), 331–363.

    Article  Google Scholar 

  11. Yeon, A. L., Yaacob, N., Hussain, M. A., & Ismail, C. T. M. (2022). Equity Crowdfunding Vs Cybercrime: A Legal Protection. BiLD Law Journal, 7(1), 139–150.

    Google Scholar 

  12. Wasiuzzaman, S., Chong, L. L., & Ong, H. B. (2021). Influence of perceived risks on the decision to invest in equity crowdfunding: A study of Malaysian investors. Journal of Entrepreneurship in Emerging Economies., 14(2), 208–230.

    Article  Google Scholar 

  13. Andryukhin, A. A. (2019). Phishing attacks and preventions in Blockchain based projects. In 2019 International Conference on Engineering Technologies and Computer Science (EnT) (pp. 15–19). IEEE.

  14. Brabham, D. C. (2017). How crowdfunding discourse threatens public arts. New Media and Society, 19(7), 983–999.

    Article  Google Scholar 

  15. Hartmann, F., Grottolo, G., Wang, X., & Lunesu, M. I. (2019). Alternative fundraising: success factors for blockchain-based vs. conventional crowdfunding. In 2019 IEEE international workshop on Blockchain oriented software engineering (IWBOSE) (pp. 38–43). IEEE.

  16. Baber, H. (2020). Blockchain-based crowdfunding. Blockchain technology for industry 4.0 (pp. 117–130). Singapore: Springer.

    Chapter  Google Scholar 

  17. Nguyen, L. T., Hoang, T. G., Do, L. H., Ngo, X. T., Nguyen, P. H., Nguyen, G. D., & Nguyen, G. N. (2021). The role of Blockchain technology-based social crowdfunding in advancing social value creation. Technological Forecasting and Social Change, 170, 120898.

    Article  Google Scholar 

  18. Kamble, S. S., Gunasekaran, A., Subramanian, N., Ghadge, A., Belhadi, A., & Venkatesh, M. (2021). Blockchain technology's impact on supply chain integration and sustainable supply chain performance: Evidence from the automotive industry. Annals of Operations Research, 1–26.

  19. Bogusz, C. I., Laurell, C., & Sandström, C. (2020). Tracking the digital evolution of entrepreneurial finance: The interplay between crowdfunding, blockchain technologies, cryptocurrencies, and initial coin offerings. IEEE Transactions on Engineering Management, 67(4), 1099–1108.

    Article  Google Scholar 

  20. Saad, M., Spaulding, J., Njilla, L., Kamhoua, C., Shetty, S., Nyang, D., & Mohaisen, D. (2020). Exploring the attack surface of Blockchain: A comprehensive survey. IEEE Communications Surveys and Tutorials, 22(3), 1977–2008.

    Article  Google Scholar 

  21. Aggarwal, S., & Kumar, N. (2021). Attacks on blockchain. Advances in Computers (Vol. 121, pp. 399–410). Elsevier.

    Google Scholar 

  22. Siddiqui, S. T., Ahmad, R., Shuaib, M., & Alam, S. (2020). Blockchain security threats, attacks and countermeasures. Ambient communications and computer systems (pp. 51–62). Springer.

    Chapter  Google Scholar 

  23. Fadi, O., Karim, Z., & Mohammed, B. (2022). A survey on Blockchain and Artificial intelligence technologies for enhancing security and privacy in smart environments. IEEE Access, 10, 93168–93186.

    Article  Google Scholar 

  24. Asongu, S. A., & De Moor, L. (2015). Recent advances in finance for inclusive development: A survey.

  25. Zhou, S., Ma, T., & Liu, Z. (2021). Crowdfunding as a screener for collective investment. Electronic Commerce Research, 21(1), 195–221.

    Article  Google Scholar 

  26. Rijanto, A. (2018). Donation-based crowdfunding as corporate social responsibility activities and financing. Journal of General Management, 43(2), 79–88.

    Article  Google Scholar 

  27. Shneor, R., & Munim, Z. H. (2019). Reward crowdfunding contribution as planned behaviour: An extended framework. Journal of Business Research, 103, 56–70.

    Article  Google Scholar 

  28. De Buysere, K., Gajda, O., Kleverlaan, R., Marom, D., & Klaes, M. (2012). A framework for European crowdfunding.

  29. Slimane, F. B., & Rousseau, A. (2020). Crowdlending campaigns for renewable energy: Success factors. Journal of Cleaner Production, 249, 119330.

    Article  Google Scholar 

  30. Ramos, J., & Stewart, J. (2014). Crowdfunding and the role of managers in ensuring the sustainability of crowdfunding platforms. JRC Scientific and Policy Reports, 85752.

  31. Huang, A. (2018). A risk detection system of e-commerce: Researches based on soft information extracted by affective computing web texts. Electronic Commerce Research, 18(1), 143–157.

    Article  Google Scholar 

  32. Kleist, V. F. (2004). A transaction cost model of electronic trust: Transactional return, incentives for network security and optimal risk in the digital economy. Electronic Commerce Research, 4(1), 41–57.

    Article  Google Scholar 

  33. Oudani, M., Sebbar, A., Zkik, K., El Harraki, I., & Belhadi, A. (2023). Green Blockchain based IoT for secured supply chain of hazardous materials. Computers and Industrial Engineering, 175, 108814.

    Article  Google Scholar 

  34. Jain, G., Kamble, S. S., Ndubisi, N. O., Shrivastava, A., Belhadi, A., & Venkatesh, M. (2022). Antecedents of Blockchain-Enabled E-commerce Platforms (BEEP) adoption by customers–A study of second-hand small and medium apparel retailers. Journal of Business Research, 149, 576–588.

    Article  Google Scholar 

  35. Rashid, M. A., Deo, K., Prasad, D., Singh, K., Chand, S., & Assaf, M. (2020). TEduChain: A blockchain-based platform for crowdfunding tertiary education. The Knowledge Engineering Review, 35, e27.

    Article  Google Scholar 

  36. Ajienka, N., Vangorp, P., & Capiluppi, A. (2020). An empirical analysis of source code metrics and smart contract resource consumption. Journal of Software: Evolution and Process, 32(10), e2267.

    Google Scholar 

  37. Schär, F. (2021). Decentralized finance: On blockchain-and smart contract-based financial markets. FRB of St. Louis Review.

  38. Verma, S., & Sheel, A. (2022). Blockchain for government organizations: Past, present and future. Journal of Global Operations and Strategic Sourcing, 15(3), 406–430.

    Article  Google Scholar 

  39. Liu, N., Lin, J., Guo, S., & Shi, X. (2022). Fashion platform operations in the sharing economy with digital technologies: recent development and real case studies. Annals of Operations Research, 1–21.

  40. Kolade, O., Adepoju, D., & Adegbile, A. (2022). Blockchains and the disruption of the sharing economy value chains. Strategic Change, 31(1), 137–145.

    Article  Google Scholar 

  41. Zhu, H., & Zhou, Z. Z. (2016). Analysis and outlook of applications of blockchain technology to equity crowdfunding in China. Financial innovation, 2(1), 1–11.

    Article  Google Scholar 

  42. Yadav, N., & Sarasvathi, V. (2020). Venturing crowdfunding using smart contracts in Blockchain. In 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT) (pp. 192–197). IEEE.

  43. Gada, S., Dhuri, A., Jain, D., Bansod, S., & Toradmalle, D. (2021). Blockchain-based crowdfunding: A trust building MODEL. In 2021 International conference on artificial intelligence and machine vision (AIMV) (pp. 1–7). IEEE.

  44. Madaan, L., **dal, D., Kumar, A., Kumar, S., & Naruka, M. S. (2022). Secure and enhanced crowdfunding solution using blockchain technology. Transforming management with AI, big-data, and IoT (pp. 293–310). Springer.

    Chapter  Google Scholar 

  45. Kaur, J., Kumar, S., Narkhede, B. E., Dabić, M., Rathore, A. P. S., & Joshi, R. (2022). Barriers to blockchain adoption for supply chain finance: The case of Indian SMEs. Electronic Commerce Research, 1–38.

  46. Zkik, K., Belhadi, A., Rehman Khan, S. A., Kamble, S. S., Oudani, M., & Touriki, F. E. (2022). Exploration of barriers and enablers of blockchain adoption for sustainable performance: implications for e-enabled agriculture supply chains. International Journal of Logistics Research and Applications, 1–38.

  47. Cai, C. W. (2018). Disruption of financial intermediation by FinTech: A review on crowdfunding and Blockchain. Accounting and Finance, 58(4), 965–992.

    Article  Google Scholar 

  48. Yadav, S. P., Agrawal, K. K., Bhati, B. S., Al-Turjman, F., & Mostarda, L. (2020). Blockchain-based cryptocurrency regulation: An overview. Computational Economics, 59(4), 1659–1675.

    Article  Google Scholar 

  49. Hasanova, H., Baek, U. J., Shin, M. G., Cho, K., & Kim, M. S. (2019). A survey on blockchain cybersecurity vulnerabilities and possible countermeasures. International Journal of Network Management, 29(2), e2060.

    Article  Google Scholar 

  50. Hirai, Y. (2017). Defining the ethereum virtual machine for interactive theorem provers. International conference on financial cryptography and data security (pp. 520–535). Springer.

    Chapter  Google Scholar 

  51. Liu, C., Liu, H., Cao, Z., Chen, Z., Chen, B., & Roscoe, B. (2018). Reguard: finding reentrancy bugs in smart contracts. In 2018 IEEE/ACM 40th International Conference on Software Engineering: Companion (ICSE-Companion) (pp. 65–68). IEEE.

  52. Rodler, M., Li, W., Karame, G. O., & Davi, L. (2018). Sereum: Protecting existing smart contracts against re-entrancy attacks. ar**v preprint ar**v:1812.05934.

  53. Shafqat, W., Byun, Y. C., & Park, N. (2020). Effectiveness of machine learning approaches towards credibility assessment of crowdfunding projects for reliable recommendations. Applied Sciences, 10(24), 9062.

    Article  Google Scholar 

  54. Wang, W., Zheng, H., & Wu, Y. J. (2020). Prediction of fundraising outcomes for crowdfunding projects based on deep learning: A multimodel comparative study. Soft Computing, 24(11), 8323–8341.

    Article  Google Scholar 

  55. Yeh, J. Y., & Chen, C. H. (2020). A machine learning approach to predict the success of crowdfunding fintech project. Journal of Enterprise Information Management.

  56. Smith, R., & Shao, J. (2007). Privacy and e-commerce: A consumer-centric perspective. Electronic Commerce Research, 7(2), 89–116.

    Article  Google Scholar 

  57. Yu, P. F., Huang, F. M., Yang, C., Liu, Y. H., Li, Z. Y., & Tsai, C. H. (2018). Prediction of crowdfunding project success with deep learning. In 2018 IEEE 15th international conference on e-business engineering (ICEBE) (pp. 1–8). IEEE.

  58. Qian, P., Liu, Z., He, Q., Zimmermann, R., & Wang, X. (2020). Towards automated reentrancy detection for smart contracts based on sequential models. IEEE Access, 8, 19685–19695.

    Article  Google Scholar 

  59. Liu, Z., Qian, P., Wang, X., Zhuang, Y., Qiu, L., & Wang, X. (2021). Combining graph neural networks with expert knowledge for smart contract vulnerability detection. IEEE Transactions on Knowledge and Data Engineering.

  60. Liang, H., Zhu, L., Yu, F. R., & Wang, X. (2022). A cross-layer defense method for blockchain empowered CBTC systems against data tampering attacks. IEEE Transactions on Intelligent Transportation Systems.

  61. Kumar, R., Kumar, P., Tripathi, R., Gupta, G. P., Garg, S., & Hassan, M. M. (2022). A distributed intrusion detection system to detect DDoS attacks in blockchain-enabled IoT network. Journal of Parallel and Distributed Computing, 164, 55–68.

    Article  Google Scholar 

  62. Altarawneh, A., & Skjellum, A. (2020). The security ingredients for correct and byzantine fault-tolerant blockchain consensus algorithms. In 2020 International symposium on networks, computers and communications (ISNCC) (pp. 1–9). IEEE.

  63. Akbar, N. A., Muneer, A., ElHakim, N., & Fati, S. M. (2021). Distributed Hybrid Double-Spending Attack Prevention Mechanism for Proof-of-Work and Proof-of-Stake Blockchain Consensuses. Future Internet, 13(11), 285.

    Article  Google Scholar 

  64. Rahman, Z., Yi, X., & Khalil, I. (2022). Blockchain based AI-enabled industry 4.0 CPS protection against advanced persistent threat. IEEE Internet of Things Journal.

  65. Kamboj, P., Khare, S., & Pal, S. (2021). User authentication using Blockchain based smart contract in role-based access control. Peer-to-Peer Networking and Applications, 14(5), 2961–2976.

    Article  Google Scholar 

  66. Kumar, R., Zhang, X., Wang, W., Khan, R. U., Kumar, J., & Sharif, A. (2019). A multimodal malware detection technique for Android IoT devices using various features. IEEE access, 7, 64411–64430.

    Article  Google Scholar 

  67. Asif, M., Aziz, Z., Bin Ahmad, M., Khalid, A., Waris, H. A., & Gilani, A. (2022). Blockchain-based authentication and trust management mechanism for smart cities. Sensors, 22(7), 2604.

    Article  Google Scholar 

  68. Hjálmarsson, F. Þ., Hreiðarsson, G. K., Hamdaqa, M., & Hjálmtýsson, G. (2018, July). Blockchain-based e-voting system. In 2018 IEEE 11th international conference on cloud computing (CLOUD) (pp. 983–986). IEEE.

  69. Kamble, S. S., Gunasekaran, A., Kumar, V., Belhadi, A., & Foropon, C. (2021). A machine learning based approach for predicting blockchain adoption in supply Chain. Technological Forecasting and Social Change, 163, 120465.

    Article  Google Scholar 

  70. Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. ar**v preprint ar**v:1609.02907.

  71. Xu, K., Hu, W., Leskovec, J., & Jegelka, S. (2018). How powerful are graph neural networks?. ar**v preprint ar**v:1810.00826.

  72. Brody, S., Alon, U., & Yahav, E. (2021). How attentive are graph attention networks?. ar**v preprint ar**v:2105.14491.

  73. Schapire, R. E. (2013). Explaining adaboost. Empirical inference (pp. 37–52). Springer.

    Chapter  Google Scholar 

  74. Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., & Chen, K. (2015). Xgboost: Extreme gradient boosting. R Package Version 0.4-2, 1(4), 1–4.

    Google Scholar 

  75. Biau, G., & Scornet, E. (2016). A random forest guided tour. TEST, 25(2), 197–227.

    Article  Google Scholar 

  76. Chen, X. W., & Jeong, J. C. (2007, December). Enhanced recursive feature elimination. In Sixth International Conference on Machine Learning and Applications (ICMLA 2007) (pp. 429–435). IEEE.

  77. Liu, Z., Qian, P., Wang, X., Zhu, L., He, Q., & Ji, S. (2021). Smart contract vulnerability detection: from pure neural network to interpretable graph feature and expert pattern fusion. ar**v preprint ar**v:2106.09282.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Kamble.

Appendix

Appendix

1.1 Table of acronymes

Acronyms

Explanation

BT

Blockchain technologies

BBC

Blockchain-based crowdfunding

GNN

Graph Neural Networks

ML

Machine Learning

DoS

Deny of service

DDoS

Distributed denial of service

AI

Artificial intelligence

RBCP

Reward-based crowdfunding project

APT

Advanced persistent threats

IDPS

intrusion detection and prevention systems

GCN

Graph Convolutional Network

GIN

Graph isomorphism network

GAT

Graph attention network

EVM

Ethereum virtual machine

ESC

Ethereum smart contract

VSC

VNT chain smart contract

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zkik, K., Sebbar, A., Fadi, O. et al. Securing blockchain-based crowdfunding platforms: an integrated graph neural networks and machine learning approach. Electron Commer Res 24, 497–533 (2024). https://doi.org/10.1007/s10660-023-09702-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10660-023-09702-8

Keywords

Navigation