Log in

Negative Refraction of Mixing Waves in Nonlinear Elastic Wave Metamaterials

  • Research
  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

Nonlinear effects can enrich the propagation of elastic waves in mechanical metamaterials, which makes it possible to extend classical phenomena and functions in linear systems to nonlinear ones. In this work, rather than monochromatic waves in similar linear structures, the negative refraction is realized by mixing waves which are generated in nonlinear elastic wave metamaterials. Based on the stiffness matrix and plane wave expansion methods, dispersion curves of in–plane modes resulting from the collinear and non–linear mixings of two longitudinal waves are calculated. In the frequency spectrum, two propagating modes coalesce at exceptional points due to the coupling of in–plane modes, and those points at which the refraction type changes are also exceptional ones. Two kinds of negative refraction can be found in the mixing modes near exceptional points, but each of them needs to be induced in a specific configuration. Moreover, experiments are performed to support the pure negative refraction and beam splitting of the nonlinear elastic waves. Particularly, the parallel configuration is able to separate and extract the nonlinear mode when the single–mode negative refraction occurs, which shows the possibility to design elastic wave device by the negative refraction of nonlinear mixing waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Abdoul-Anziz, H., Jakabčin, L., Seppecher, P.: Homogenization of an elastic material reinforced by very strong fibres arranged along a periodic lattice. Proc. R. Soc. A 477, 20200620 (2021)

    Article  MathSciNet  Google Scholar 

  2. Gurbuz, C., Kronowetter, F., Dietz, C., Eser, M., Schmid, J., Marburg, S.: Generative adversarial networks for the design of acoustic metamaterials. J. Acoust. Soc. Am. 149, 1162–1174 (2021)

    Article  Google Scholar 

  3. Chen, X.Y., Ji, Q.X., Martinez, J.A.I., Tan, H.F., Ulliac, G., Laude, V., Kadic, M.: Closed tubular mechanical metamaterial as lightweight structure and absorber. J. Mech. Phys. Solids 167, 104957 (2022)

    Article  Google Scholar 

  4. Chen, E.Z., Luan, S.Z., Gaitanaros, S.: On the compressive strength of brittle lattice metamaterials. Int. J. Solids Struct. 257, 111871 (2022)

    Article  Google Scholar 

  5. Sorrentino, A., Castagnetti, D., Mizzi, L., Spaggiari, A.: Bio–inspired auxetic mechanical metamaterials evolved from rotating squares unit. Mech. Mater. 173, 104421 (2022)

    Article  Google Scholar 

  6. **a, B.Z., Wang, G.B., Zheng, S.J.: Robust edge states of planar phononic crystals beyond high–symmetry points of Brillouin zones. J. Mech. Phys. Solids 124, 471–488 (2019)

    Article  MathSciNet  Google Scholar 

  7. Faraci, D., Comi, C., Marigo, J.J.: Band gaps in metamaterial plates: asymptotic homogenization and Bloch–Floquet approaches. J. Elast. 148, 55–79 (2022)

    Article  MathSciNet  Google Scholar 

  8. Sepehri, S., Mashhadi, M.M., Fakhrabadi, M.M.S.: Active/passive tuning of wave propagation in phononic microbeams via piezoelectric patches. Mech. Mater. 167, 104249 (2022)

    Article  Google Scholar 

  9. Gupta, V., Munian, R.K., Bhattacharya, B.: Dispersion analysis of the hourglass–shaped periodic shell lattice structure. Int. J. Solids Struct. 254, 111931 (2022)

    Article  Google Scholar 

  10. Deng, J., Zheng, L., Gao, N.S.: Broad band gaps for flexural wave manipulation in plates with embedded periodic strip acoustic black holes. Int. J. Solids Struct. 224, 111043 (2021)

    Article  Google Scholar 

  11. Chen, Y., Liu, X.N., Hu, G.K.: Topological phase transition in mechanical honeycomb lattice. J. Mech. Phys. Solids 122, 54–68 (2019)

    Article  MathSciNet  Google Scholar 

  12. Nassar, H., Chen, H., Huang, G.L.: Microtwist elasticity: a continuum approach to zero modes and topological polarization in Kagome lattices. J. Mech. Phys. Solids 144, 104107 (2020)

    Article  MathSciNet  Google Scholar 

  13. Fonseca, F.M., Goncalves, P.B.: Nonlinear behavior and instabilities of a hyperelastic von Mises truss. Int. J. Non-Linear Mech. 142, 103964 (2022)

    Article  Google Scholar 

  14. Bidhendi, M.R.T.: Band gap transmission in a periodic network of coupled buckled beams. Int. J. Solids Struct. 252, 111766 (2022)

    Article  Google Scholar 

  15. Fang, X., Sheng, P., Wen, J.H., Chen, W.Q., Cheng, L.: A nonlinear metamaterial plate for suppressing vibration and sound radiation. Int. J. Mech. Sci. 228, 107473 (2022)

    Article  Google Scholar 

  16. Deng, M.X., **ang, Y.X.: Analysis of second–harmonic generation by primary ultrasonic guided wave propagation in a piezoelectric plate. Ultrasonics 61, 121–125 (2015)

    Article  Google Scholar 

  17. Li, W.B., Jiang, C., Qing, X.L., Liu, L.B., Deng, M.X.: Assessment of low–velocity impact damage in composites by the measure of second–harmonic guided waves with the phase–reversal approach. Sci. Progr. 103, 1–14 (2019)

    Google Scholar 

  18. Liang, B., Guo, X.S., Tu, J., Zhang, D., Cheng, J.C.: An acoustic rectifier. Nat. Mater. 9, 989–992 (2010)

    Article  Google Scholar 

  19. Li, Z.N., Wang, Y.Z., Wang, Y.S.: Tunable mechanical diode of nonlinear elastic metamaterials induced by imperfect interface. Proc. R. Soc. A 477, 20200357 (2021)

    Article  MathSciNet  Google Scholar 

  20. Miao, Z.H., Wang, Y.Z.: Nonreciprocal transmission of non–collinear mixing wave in nonlinear elastic wave metamaterial. J. Elast. 150, 341–366 (2022)

    Article  MathSciNet  Google Scholar 

  21. Gliozzi, A.S., Miniaci, M., Krushynska, A.O., Morvan, B., Scalerandi, M., Pugno, N.M., Bosia, F.: Proof of concept of a frequency–preserving and time–invariant metamaterial–based nonlinear acoustic diode. Sci. Rep. 9, 9560 (2019)

    Article  Google Scholar 

  22. Fu, C.Y., Xu, J.X., Zhao, T.F., Chen, C.Q.: A mechanical wave switch with tunable frequency output. Appl. Phys. Lett. 115, 191902 (2019)

    Article  Google Scholar 

  23. Liang, B., Kan, W.W., Zou, X.Y., Yin, L.L., Cheng, J.C.: Acoustic transistor: amplification and switch of sound by sound. Appl. Phys. Lett. 105, 083510 (2014)

    Article  Google Scholar 

  24. Willis, J.R.: Negative refraction in a laminate. J. Mech. Phys. Solids 97, 10–18 (2016)

    Article  MathSciNet  Google Scholar 

  25. Srivastava, A.: Metamaterial properties of periodic laminates. J. Mech. Phys. Solids 96, 252–263 (2016)

    Article  MathSciNet  Google Scholar 

  26. Srivastava, A., Willis, J.R.: Evanescent wave boundary layers in metamaterials and sidestep** them through a variational approach. Proc. R. Soc. A 473, 20160765 (2017)

    Article  MathSciNet  Google Scholar 

  27. Morini, L., Eyzat, Y., Gei, M.: Negative refraction in quasicrystalline multilayered metamaterials. J. Mech. Phys. Solids 124, 282–298 (2019)

    Article  MathSciNet  Google Scholar 

  28. Mokhtari, A.A., Lu, Y., Srivastava, A.: On the properties of phononic eigenvalue problems. J. Mech. Phys. Solids 131, 167–179 (2019)

    Article  MathSciNet  Google Scholar 

  29. Lustig, B., Elbaz, G., Muhafra, A., Shmuel, G.: Anomalous energy transport in laminates with exceptional points. J. Mech. Phys. Solids 133, 103719 (2019)

    Article  MathSciNet  Google Scholar 

  30. Mokhtari, A.A., Lu, Y., Zhou, Q.Y., Amirkhizi, A.V., Srivastava, A.: Scattering of in–plane elastic waves at metamaterial interfaces. J. Mech. Phys. Solids 150, 103278 (2020)

    MathSciNet  Google Scholar 

  31. Korneev, V.A., Demcenko, A.: Possible second–order nonlinear interactions of plane waves in an elastic solid. J. Acoust. Soc. Am. 135, 591–598 (2014)

    Article  Google Scholar 

  32. Gao, X., Qu, J.N.: Necessary and sufficient conditions for resonant mixing of plane waves in elastic solids with quadratic nonlinearity. J. Acoust. Soc. Am. 148, 1934–1946 (2020)

    Article  Google Scholar 

  33. Ju, T., Achenbach, J.D., Jacobs, L.J., Qu, J.M.: Nondestructive evaluation of thermal aging of adhesive joints by using a nonlinear wave mixing technique. NDT&E Int. 103, 62–67 (2019)

    Article  Google Scholar 

  34. Sun, M.X., **ang, Y.X., Deng, M.X., Xu, J.C., Xuan, F.Z.: Scanning non–collinear wave mixing for nonlinear ultrasonic detection and localization of plasticity. NDT&E Int. 93, 1–6 (2018)

    Article  Google Scholar 

  35. Liu, H.J., Zhao, Y.X., Zhang, H., Deng, M.X., Hu, N., Bi, X.Y.: Experimental and numerical investigation of the micro–crack damage in elastic solids by two–way collinear mixing method. Sensors 21, 2061 (2021)

    Article  Google Scholar 

  36. Wang, L.G., Rokhlin, S.I.: Recursive geometric integrators for wave propagation in a functionally graded multilayered elastic medium. Sensors 52, 2473–2506 (2004)

    MathSciNet  Google Scholar 

  37. Deymier, P.A.: Acoustic Metamaterials and Phononic Crystals. Springer, Heidelberg (2013)

    Book  Google Scholar 

  38. Rose, J.L.: Ultrasonic Waves in Solid Media. Cambridge University Press, Cambridge (1999)

    Google Scholar 

Download references

Funding

The authors wish to express gratitude for the supports provided by the National Natural Science Foundation of China (Grant Nos. 11991031 and 12021002).

Author information

Authors and Affiliations

Authors

Contributions

Zi-Hao Miao performed the numerical simulation and experiment. Yi-Ze Wang discussed about the results and supervised the research.

Corresponding author

Correspondence to Yi-Ze Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The elements of \(\mathbf{{K}}_{m}^{j}\) in Eq. (27a), (27b) are

$$\begin{aligned} K_{m}^{j}(1,1) &= - K_{m}^{j}(2,2) = K_{m}^{j}(3,3) = - K_{m}^{j}(4,4) \\ &= \mathrm{i}\frac{\mu _{j}\kappa _{m}}{K_{0m}}\left \{ \left [ \kappa _{m}^{4} + \nu _{Tmj}^{2}\left ( 2\nu _{Lmj}^{2} - \kappa _{m}^{2} \right ) \right ]D_{Lmj}^{ -} D_{Tmj}^{ -} \right . \\ &\quad {} \left . + \left ( 3\kappa _{m}^{2} - \nu _{Tmj}^{2} \right )\nu _{Lmj}\nu _{Tmj}\left ( D_{Lmj}^{ +} D_{Tmj}^{ +} - 4\chi _{Lmj}\chi _{Tmj} \right ) \right \}, \end{aligned}$$
(A.1)
$$ K_{m}^{j}(1,2) = - K_{m}^{j}(3,4) = - \mathrm{i}\frac{\mu _{j}\nu _{Lmj}k_{Tmj}^{2}}{K_{0m}}\left ( \nu _{Lmj}\nu _{Tmj}D_{Lmj}^{ -} D_{Tmj}^{ +} + \kappa _{m}^{2}D_{Lmj}^{ +} D_{Tmj}^{ -} \right ), $$
(A.2)
$$\begin{aligned} K_{m}^{j}(1,3) &= K_{m}^{j}(2,4) = K_{m}^{j}(3,1) = K_{m}^{j}(4,2) \\ &= 2\mathrm{i}\frac{\mu _{j}\nu _{Lmj}\nu _{Tmj}\kappa _{m}k_{Tmj}^{2}}{K_{0m}}\left ( \chi _{Lmj}D_{Tmj}^{ +} - \chi _{Tmj}D_{Lmj}^{ +} \right ), \end{aligned}$$
(A.3)
$$ K_{m}^{j}(1,4) = - K_{m}^{j}(3,2) = 2\mathrm{i}\frac{\mu _{j}\nu _{Lmj}k_{Tmj}^{2}}{K_{0m}}\left ( \nu _{Lmj}\nu _{Tmj}\chi _{Tmj}D_{Lmj}^{ -} + \kappa _{m}^{2}\chi _{Lmj}D_{Tmj}^{ -} \right ), $$
(A.4)
$$ K_{m}^{j}(2,1) = - K_{m}^{j}(4,3) = - \mathrm{i}\frac{\mu _{j}\nu _{Tmj}k_{Tmj}^{2}}{K_{0m}}\left ( \nu _{Lmj}\nu _{Tmj}D_{Lmj}^{ +} D_{Tmj}^{ -} + \kappa _{m}^{2}D_{Lmj}^{ -} D_{Tmj}^{ +} \right ), $$
(A.5)
$$ K_{m}^{j}(2,3) = - K_{m}^{j}(4,1) = 2\mathrm{i}\frac{\mu _{j}\nu _{Tmj}k_{Tmj}^{2}}{K_{0m}}\left ( \nu _{Lmj}\nu _{Tmj}\chi _{Lmj}D_{Tmj}^{ -} + \kappa _{m}^{2}\chi _{Tmj}D_{Lmj}^{ -} \right ), $$
(A.6)

where \(D_{Qmj}^{ \pm} = \chi _{Qmj}^{2} \pm 1\), \(\chi _{Qmj} = \exp \left ( \mathrm{i}\nu _{Qmj}h_{j} \right )\) and

$$ K_{0mj} = \left ( \kappa _{m}^{4} + \nu _{Lmj}^{2}\nu _{Tmj}^{2} \right )D_{Lmj}^{ -} D_{Tmj}^{ -} + 2\nu _{Lmj}\nu _{Tmj}\kappa _{m}^{2}\left ( D_{Lmj}^{ +} D_{Tmj}^{ +} - 4\chi _{Lmj}\chi _{Tmj} \right ). $$
(A.7)

Appendix B

The coefficients \(\varepsilon _{ym}\) in Eq. (32) are

$$ \varepsilon _{0m} = \varepsilon _{4m} = |\mathbf{K}_{12m}^{n}|, $$
(B.1)
$$\begin{aligned} \varepsilon _{1m} &= \varepsilon _{3m} \\ &= \mathbf{K}_{m}^{n}(1,1)\mathbf{K}_{m}^{n}(2,4) - \mathbf{K}_{m}^{n}(1,2)\mathbf{K}_{m}^{n}(2,3) + \mathbf{K}_{m}^{n}(1,3)\left [ \mathbf{K}_{m}^{n}(2,2) - \mathbf{K}_{m}^{n}(4,4) \right ] \\ &\quad {} - \mathbf{K}_{m}^{n}(1,4)\left [ \mathbf{K}_{m}^{n}(2,1) - \mathbf{K}_{m}^{n}(4,3) \right ] + \mathbf{K}_{m}^{n}(2,3)\mathbf{K}_{m}^{n}(3,4) - \mathbf{K}_{m}^{n}(2,4)\mathbf{K}_{m}^{n}(3,3), \end{aligned}$$
(B.2)
$$\begin{aligned} \varepsilon _{2m} &= |\mathbf{K}_{11m}^{n}| + |\mathbf{K}_{22m}^{n}| - \mathbf{K}_{m}^{n}(1,1)\mathbf{K}_{m}^{n}(4,4) + \mathbf{K}_{m}^{n}(1,2)\mathbf{K}_{m}^{n}(4,3) \\ &\quad {}- \mathbf{K}_{m}^{n}(1,3)\mathbf{K}_{m}^{n}(4,2) + \mathbf{K}_{m}^{n}(1,4)\mathbf{K}_{m}^{n}(4,1) + \mathbf{K}_{m}^{n}(2,1)\mathbf{K}_{m}^{n}(3,4) \\ &\quad {} - \mathbf{K}_{m}^{n}(2,2)\mathbf{K}_{m}^{n}(3,3) + \mathbf{K}_{m}^{n}(2,3)\mathbf{K}_{m}^{n}(3,2) - \mathbf{K}_{m}^{n}(2,4)\mathbf{K}_{m}^{n}(3,1). \end{aligned}$$
(B.3)

Appendix C

The expressions of matrices \(\mathbf{X}_{zm}\) and \(\mathbf{Y}_{zm}\) in Eq. (36a), (36b) are

$$ \mathbf{X}_{0m} = \left [ \textstyle\begin{array}{c@{\quad}c} G'G''\left [ \lambda \left ( G \right ) + 2\mu \left ( G \right ) \right ] + \mu \left ( G \right )\kappa _{m}^{2} & \left [ G'\mu \left ( G \right ) + G''\lambda \left ( G \right ) \right ]\kappa _{m} \\ \left [ G'\lambda \left ( G \right ) + G''\mu \left ( G \right ) \right ]\kappa _{m} & G'G''\mu \left ( G \right ) + \left [ \lambda \left ( G \right ) + 2\mu \left ( G \right ) \right ]\kappa _{m}^{2} \end{array}\displaystyle \right ], $$
(C.1)
$$ \mathbf{X}_{1m} = \left [ \textstyle\begin{array}{c@{\quad}c} \left ( G' + G'' \right )\left [ \lambda \left ( G \right ) + 2\mu \left ( G \right ) \right ] & \left [ \lambda \left ( G \right ) + \mu \left ( G \right ) \right ]\kappa _{m} \\ \left [ \lambda \left ( G \right ) + \mu \left ( G \right ) \right ]\kappa _{m} & \left ( G' + G'' \right ) \cdot \mu \left ( G \right ) \end{array}\displaystyle \right ], $$
(C.2)
$$ \mathbf{X}_{2m} = \left [ \textstyle\begin{array}{c@{\quad}c} \lambda \left ( G \right ) + 2\mu \left ( G \right ) & 0 \\ 0 & \mu \left ( G \right ) \end{array}\displaystyle \right ], $$
(C.3)
$$ \mathbf{Y}_{0m} = \left [ \textstyle\begin{array}{c@{\quad}c} \left ( G'' + k_{m}^{B} \right )\left ( G' + k_{m}^{B} \right )\left [ \lambda \left ( G \right ) + 2\mu \left ( G \right ) \right ] & 0 \\ 0 & \left ( G'' + k_{m}^{B} \right )\left ( G' + k_{m}^{B} \right )\mu \left ( G \right ) \end{array}\displaystyle \right ]. $$
(C.4)
$$ \mathbf{Y}_{1m} = \left [ \textstyle\begin{array}{c@{\quad}c} 0 & \left ( G'' + k_{m}^{B} \right )\lambda \left ( G \right ) + \left ( G' + k_{m}^{B} \right )\mu \left ( G \right ) \\ \left ( G'' + k_{m}^{B} \right )\mu \left ( G \right ) + \left ( G' + k_{m}^{B} \right )\lambda \left ( G \right ) & 0 \end{array}\displaystyle \right ], $$
(C.5)
$$ \mathbf{Y}_{2m} = \left [ \textstyle\begin{array}{c@{\quad}c} \mu \left ( G \right ) & 0 \\ 0 & \lambda \left ( G \right ) + 2\mu \left ( G \right ) \end{array}\displaystyle \right ], $$
(C.6)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, ZH., Wang, YZ. Negative Refraction of Mixing Waves in Nonlinear Elastic Wave Metamaterials. J Elast (2024). https://doi.org/10.1007/s10659-024-10060-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10659-024-10060-1

Keywords

Mathematics Subject Classification

Navigation