Log in

Nonreciprocal Transmission of Non-collinear Mixing Wave in Nonlinear Elastic Wave Metamaterial

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

This investigation is focused on the nonreciprocal transmission of the non-collinear mixing wave in a nonlinear elastic wave metamaterial. The nonlinear elastic wave metamaterial with asymmetric structure is used to break the traditional reciprocal transmission, which is composed of a nonlinear material and a linear phononic crystal. When two non-collinear shear waves following the resonant condition interact with each other, the sum frequency longitudinal wave can be generated and propagate together with fundamental and second harmonics. Based on the transfer and stiffness matrices, band gaps and transmission coefficients are derived. The changing of band structures results in manipulating elastic waves with different frequencies. In the nonreciprocal frequency region, elastic waves can propagate along the positive direction while the reverse case is prohibited. The mixing of two incident SV waves in the nonlinear elastic wave metamaterial is verified by experiments and the results can support the theoretical analysis and numerical calculations. Because of material nonlinearity and asymmetric structure, the nonlinear elastic wave metamaterial can behave as a mechanical diode. The present work shows the possibility to design nonreciprocal elastic wave device by nonlinear wave mixing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Madeo, A., Collet, M., Miniaci, M., Billon, K., Ouisse, M., Neff, P.: Modeling phononic crystals via the weighted relaxed micromorphic model with free and gradient micro-inertia. J. Elast. 130, 59–83 (2018)

    Article  MathSciNet  Google Scholar 

  2. Aghighi, F., Morris, J., Amirkhizi, A.V.: Low-frequency micro-structured mechanical metamaterials. Mech. Mater. 130, 65–75 (2019)

    Article  Google Scholar 

  3. Li, Z.W., Wang, C., Wang, X.D.: Modelling of elastic metamaterials with negative mass and modulus based on translational resonance. Int. J. Solids Struct. 162, 271–284 (2019)

    Article  Google Scholar 

  4. Goldsberry, B.M., Wallen, S.P., Guyomar, D., Haberman, M.R.: Non-reciprocal wave propagation in mechanically-modulated continuous elastic metamaterials. J. Acoust. Soc. Am. 146, 782–788 (2019)

    Article  Google Scholar 

  5. Colbrook, M.J., Kisil, A.V.: A Mathieu function boundary spectral method for scattering by multiple variable poro-elastic plates, with applications to metamaterials and acoustics. Proc. R. Soc. A 479, 20200184 (2020)

    Article  MathSciNet  Google Scholar 

  6. Witarto, W., Nakshatrala, K.B., Mo, Y.L.: Global sensitivity analysis of frequency band gaps in one-dimensional phononic crystals. Mech. Mater. 134, 38–53 (2019)

    Article  Google Scholar 

  7. Yuksel, O., Yilmaz, C.: Realization of an ultrawide stop band in a 2-D elastic metamaterial with topologically optimized inertial amplification mechanisms. Int. J. Solids Struct. 203, 138–150 (2020)

    Article  Google Scholar 

  8. Melnikov, A., Maeder, M., Friedrich, N., Pozhanka, Y., Wollmann, A., Scheffler, M., Oberst, S., Powell, D., Marburg, S.: Acoustic metamaterial capsule for reduction of stage machinery noise. J. Acoust. Soc. Am. 147, 1491–1503 (2020)

    Article  Google Scholar 

  9. Nguyen, H.Q., Wu, Q., Chen, H., Chen, J.J., Yu, Y.K., Tracy, S., Huang, G.L.: A Fano-based acoustic metamaterial for ultra-broadband sound barriers. Proc. R. Soc. A 477, 20210024 (2021)

    Article  MathSciNet  Google Scholar 

  10. Kerrian, P.A., Hanford, A.D., Capone, D.E., Beck, B.S.: Development of a perforated plate underwater acoustic ground cloak. J. Acoust. Soc. Am. 146, 2303–2308 (2019)

    Article  Google Scholar 

  11. Deng, Y.J., Li, H.J., Liu, H.Y.: Spectral properties of Neumann–Poincare operator and anomalous localized resonance in elasticity beyond quasi-static limit. J. Elast. 140, 213–242 (2020)

    Article  MathSciNet  Google Scholar 

  12. Mokhtari, A.A., Lu, Y., Srivastava, A.: On the emergence of negative effective density and modulus in 2-phase phononic crystals. J. Mech. Phys. Solids 126, 256–271 (2019)

    Article  Google Scholar 

  13. Fu, C.Y., Wang, B.H., Zhao, T.F., Chen, C.Q.: High efficiency and broadband acoustic diodes. Appl. Phys. Lett. 112, 051902 (2018)

    Article  Google Scholar 

  14. Gliozzi, A.S., Miniaci, M., Krushynska, A.O., Morvan, B., Scalerandi, M., Pugno, N.M., Bosia, F.: Proof of concept of a frequency-preserving and time-invariant metamaterial-based nonlinear acoustic diode. Sci. Rep. 9, 9560 (2019)

    Article  Google Scholar 

  15. Zhao, J.L., Chillara, V.K., Ren, B.Y., Cho, H.J., Qiu, J.H., Lissenden, C.J.: Second harmonic generation in composites: theoretical and numerical analyses. J. Appl. Phys. 119, 064902 (2016)

    Article  Google Scholar 

  16. Ishii, Y., Biwa, S., Adachi, T.: Second-harmonic generation of two-dimensional elastic wave propagation in an infinite layered structure with nonlinear spring-type interfaces. Wave Motion 96, 102569 (2020)

    Article  MathSciNet  Google Scholar 

  17. Zhao, Y.X., Chen, Z.M., Cao, P., Qiu, Y.J.: Experiment and FEM study of one-way mixing of elastic waves with quadratic nonlinearity. Nondestruct. Test. Eval. Int. 72, 33–40 (2015)

    Google Scholar 

  18. Delgadillo, H.H., Loendersloot, R., Yntema, D., Tinga, T., Akkerman, R.: Steering the propagation direction of a non-linear acoustic wave in a solid material. Ultrasonics 98, 28–34 (2019)

    Article  Google Scholar 

  19. Tang, G.X., Liu, M.H., Jacobs, L.J., Qu, J.M.: Detecting localized plastic strain by a scanning collinear wave mixing method. J. Nondestruct. Eval. 33, 196–204 (2014)

    Article  Google Scholar 

  20. Ju, T.H., Achenbach, J.D., Jacobs, L.J., Guimaraes, M., Qu, J.M.: Ultrasonic nondestructive evaluation of alkali–silica reaction damage in concrete prism samples. Mater. Struct. 50, 60 (2017)

    Article  Google Scholar 

  21. Zhao, Y.X., Xu, Y.M., Chen, Z.M., Cao, P., Hu, N.: Detection and characterization of randomly distributed micro-cracks in elastic solids by one-way collinear mixing method. J. Nondestruct. Eval. 37, 47 (2018)

    Article  Google Scholar 

  22. Cui, J.G., Yang, T.Z., Chen, L.Q.: Frequency-preserved non-reciprocal acoustic propagation in a granular chain. Appl. Phys. Lett. 112, 181904 (2018)

    Article  Google Scholar 

  23. Devaux, T., Cebrecos, A., Richoux, O., Pagneux, V., Tournat, V.: Acoustic radiation pressure for nonreciprocal transmission and switch effects. Nat. Commun. 10, 3292 (2019)

    Article  Google Scholar 

  24. Zakeri, M., Keller, S.M., Wang, Y.E., Lynch, C.S.: Nonreciprocal wave propagation and parametric amplification of bulk elastic waves in nonlinear anisotropic materials. New J. Phys. 22, 023009 (2020)

    Article  MathSciNet  Google Scholar 

  25. Baz, A.: Active synthesis of a gyroscopic-nonreciprocal acoustic metamaterial. J. Acoust. Soc. Am. 148, 1271–1288 (2020)

    Article  Google Scholar 

  26. Liang, B., Guo, X.S., Tu, J., Zhang, D., Cheng, J.C.: An acoustic rectifier. Nat. Mater. 9, 989–992 (2010)

    Article  Google Scholar 

  27. Li, Z.N., Wang, Y.Z., Wang, Y.S.: Tunable nonreciprocal transmission in nonlinear elastic wave metamaterial by initial stresses. Int. J. Solids Struct. 182, 218–235 (2020)

    Article  Google Scholar 

  28. Korneev, V.A., Demcenko, A.: Possible second-order nonlinear interactions of plane waves in an elastic solid. J. Acoust. Soc. Am. 135, 591–598 (2014)

    Article  Google Scholar 

  29. Liu, M.H., Tang, G.X., Jacobs, L.J., Qu, J.M.: Measuring acoustic nonlinearity parameter using collinear wave mixing. J. Appl. Phys. 112, 024908 (2012)

    Article  Google Scholar 

  30. Jones, G.L., Kobett, D.R.: Interaction of elastic waves in an isotropic solid. J. Acoust. Soc. Am. 35, 5–10 (1963)

    Article  MathSciNet  Google Scholar 

  31. Gao, X., Qu, J.N.: Necessary and sufficient conditions for resonant mixing of plane waves in elastic solids with quadratic nonlinearity. J. Acoust. Soc. Am. 148, 1934–1946 (2020)

    Article  Google Scholar 

  32. Koissin, V., Demcenko, A., Korneev, V.A.: Isothermal epoxy-cure monitoring using nonlinear ultrasonics. Int. J. Adhes. Adhes. 52, 11–18 (2014)

    Article  Google Scholar 

  33. Jiao, J.P., Lv, H.T., He, C.F., Wu, B.: Fatigue crack evaluation using the non-collinear wave mixing technique. Smart Mater. Struct. 26, 065005 (2017)

    Article  Google Scholar 

  34. Sun, M.X., **ang, Y.X., Deng, M.X., Xu, J.C., Xuan, F.Z.: Scanning non-collinear wave mixing for nonlinear ultrasonic detection and localization of plasticity. Nondestruct. Test. Eval. Int. 93, 1–6 (2018)

    Google Scholar 

  35. Lv, H.T., Jiao, J.P., Wu, B., He, C.F.: Evaluation of fatigue crack orientation using non-collinear shear wave mixing method. J. Nondestruct. Eval. 37, 74 (2018)

    Article  Google Scholar 

  36. Deng, M.X., **ang, Y.X.: Analysis of second-harmonic generation by primary horizontal shear modes in layered planar structures with imperfect interfaces. J. Appl. Phys. 113, 043513 (2013)

    Article  Google Scholar 

  37. Chen, Z.M., Tang, G.X., Zhao, Y.X., Jacobs, L.J., Qu, J.M.: Mixing of collinear plane wave pulses in elastic solids with quadratic nonlinearity. J. Acoust. Soc. Am. 136, 2389–2404 (2014)

    Article  Google Scholar 

  38. Wang, L., Rokhlin, S.I.: Stable reformulation of transfer matrix method for wave propagation in layered anisotropic media. Ultrasonics 39, 413–424 (2001)

    Article  Google Scholar 

  39. Rose, J.L.: Ultrasonic Waves in Solid Media. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  40. Achenbach, J.D.: Wave Propagation in Elastic Solids. Elsevier Science Publishers, Amsterdam (1975)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to express gratitude for the supports provided by the National Natural Science Foundation of China (Grant Nos. 11922209, 11991031 and 12021002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Ze Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The displacement of the SH wave in the periodic structure is

$$\begin{aligned} \mathbf{u}_{rj}^{(1)} &= \left \{ U_{rj}\hat{\mathbf{x}}\exp \left [ \mathrm{i}\omega _{r}\beta _{Trj}\left ( y - y_{n - 1} \right ) / c_{r} \right ] + R_{rj}\hat{\mathbf{x}}\exp \left [ \mathrm{i}\omega _{r}\beta _{Trj}\left ( y_{n} - y \right ) / c_{r} \right ] \right \} \\ &\quad {}\times\exp \left [ \mathrm{i}\omega _{r}\left ( z / c_{r} - t \right ) \right ], \end{aligned}$$
(25)

where \(U_{rj}\) and \(R_{rj}\) are amplitudes of incident and reflected SH waves.

Moreover, the stress component can be derived as

$$ \tau _{yzrj}^{(1)} = \mu _{j}\frac{\partial u_{rj}^{(1)}}{\partial y}. $$
(26)

Substituting Eq. (25) into Eq. (26), we can obtain that

$$\begin{aligned} \tau _{yzrj}^{(1)} &= \frac{\mathrm{i}\mu _{j}\omega _{r}\beta _{Trj}}{c_{r}}\left \{ U_{rj}\exp \left [ \mathrm{i}\omega _{r}\beta _{Trj}\left ( y - y_{n - 1} \right ) / c_{r} \right ] \right . \\ &\quad \left . + R_{rj}\exp \left [ \mathrm{i}\omega _{r}\beta _{Trj}\left ( y_{n} - y \right ) / c_{r} \right ] \right \}\exp \left [ \mathrm{i}\omega _{r}\left ( z / c_{r} - t \right ) \right ]. \end{aligned}$$
(27)

The displacement and stress of the SH wave on both sides of each sub cell can be written as

$$ \left \{ u_{r\mathrm{A}}^{(1)}, \tau _{yzr\mathrm{A}}^{(1)} \right \}_{y = y_{n}}^{\mathrm{T}} = \mathbf{T}_{r\mathrm{A}}\left \{ u_{r\mathrm{A}}^{(1)}, \tau _{yzr\mathrm{A}}^{(1)} \right \}_{y = y_{n - 1}}^{\mathrm{T}}, $$
(28a)
$$ \left \{ u_{r\mathrm{B}}^{(1)}, \tau _{yzr\mathrm{B}}^{(1)} \right \}_{y = y_{n + 1}}^{\mathrm{T}} = \mathbf{T}_{r\mathrm{B}}\left \{ u_{r\mathrm{B}}^{(1)}, \tau _{yzr\mathrm{B}}^{(1)} \right \}_{y = y_{n}}^{\mathrm{T}}, $$
(28b)

where \(\mathbf{T}_{rj}\) refers to the transfer matrix of sub cell A or B with the parameter \(\chi _{\mathit{Trj}} = \exp(\text{i}\omega _{r}\beta _{\mathit{Trj}} b_{j}/c_{r})\) as

$$ \mathbf{T}_{rj} = \frac{1}{2}\left [ \textstyle\begin{array}{c@{\quad}c} \chi _{Trj} + \chi _{Trj}^{ - 1} & \frac{\left ( \chi _{Trj} - \chi _{Trj}^{ - 1} \right )c_{r}}{\mathrm{i}\mu _{j}\omega _{r}\beta _{Trj}} \\ \mathrm{i}\mu _{j}\omega _{r}\beta _{Trj}(\chi _{Trj} - \chi _{Trj}^{ - 1}) / c_{r} & \chi _{Trj} + \chi _{Trj}^{ - 1} \end{array}\displaystyle \right ]. $$
(29)

It can be obtained from Eqs. (28a) and (28b) that displacements and stresses on both sides of a unit cell are

$$ \left \{ u_{r\mathrm{B}}^{(1)}, \tau _{yzr\mathrm{B}}^{(1)} \right \}_{y = y_{n + 1}}^{\mathrm{T}} = \mathbf{T}_{r}\left \{ u_{r\mathrm{A}}^{(1)}, \tau _{yzr\mathrm{A}}^{(1)} \right \}_{y = y_{n - 1}}^{\mathrm{T}}, $$
(30)

where \(\mathbf{T}_{r} = \mathbf{T}\)rB\(\mathbf{T}\)rA.

Based on the Bloch theory, the eigenvalue equation is derived and the dispersion relation of SH wave can be obtained. Moreover, the stresses on both sides of each sub cell can be expressed as

$$ \left \{ \tau _{yzr\mathrm{A}}^{(1)}|_{y = y_{n - 1}}, \tau _{yzr\mathrm{A}}^{(1)}|_{y = y_{n}} \right \}^{\mathrm{T}} = \mathbf{K}_{r\mathrm{A}}\left \{ u_{r\mathrm{A}}^{(1)}|_{y = y_{n - 1}}, u_{r\mathrm{A}}^{(1)}|_{y = y_{n}} \right \}^{\mathrm{T}}, $$
(31a)
$$ \left \{ \tau _{yzr\mathrm{B}}^{(1)}|_{y = y_{n}}, \tau _{yzr\mathrm{B}}^{(1)}|_{y = y_{n + 1}} \right \}^{\mathrm{T}} = \mathbf{K}_{r\mathrm{B}}\left \{ u_{r\mathrm{B}}^{(1)}|_{y = y_{n}}, u_{r\mathrm{B}}^{(1)}|_{y = y_{n + 1}} \right \}^{\mathrm{T}}, $$
(31b)

where \(\mathbf{K}_{rj}\) refers to the stiffness matrix of the sub cell A or B, and its elements are

$$ K_{rj11} = - K_{rj22} = \frac{\mathrm{i}\mu _{j}\omega _{r}\beta _{Trj}\left ( 1 + \chi _{Trj}^{2} \right )}{\left ( 1 - \chi _{Trj}^{2} \right )c_{r}},\quad K_{rj12} = - K_{rj21} = - \frac{2\mathrm{i}\mu _{j}\omega _{r}\beta _{Trj}\chi _{Trj}}{\left ( 1 - \chi _{Trj}^{2} \right )c_{r}}. $$
(32a, b)

Similarly, stresses and displacements on both sides of the \(n\)th unit cell can be expressed as

$$ \left \{ \tau _{yzr\mathrm{B}}^{(1)}|_{y = y_{n - 1}}, \tau _{yzr\mathrm{B}}^{(1)}|_{y = y_{n + 1}} \right \}^{\mathrm{T}} = \mathbf{K}_{r}^{n}\left \{ u_{r\mathrm{B}}^{(1)}|_{y = y_{n - 1}}, u_{r\mathrm{B}}^{(1)}|_{y = y_{n + 1}} \right \}^{\mathrm{T}}, $$
(33)

where \(\mathbf{K}_{r}^{n}\) is the stiffness matrix of the \(n\)th unit cell.

According to Eqs. (31a)–(33), we can derive the expressions of \(\mathbf{K}_{r}^{n}\) as

$$ \mathbf{K}_{r}^{n} = \left [ \textstyle\begin{array}{c@{\quad}c} K_{r\mathrm{A}11} - K_{r\mathrm{A}12}K_{rn}K_{r\mathrm{A}21} & K_{r\mathrm{A}12}K_{rn}K_{r\mathrm{B}12} \\ - K_{r\mathrm{B}21}K_{rn}K_{r\mathrm{A}21} & K_{r\mathrm{B}22} + K_{r\mathrm{B}21}K_{rn}K_{r\mathrm{B}12} \end{array}\displaystyle \right ], $$
(34)

where \(K_{rn} = (K_{r\mathrm{A}22} - K_{r\mathrm{B}11})^{ - 1}\).

Following the previous procedure and repeating the above derivation, the global stiffness matrix is

$$ \mathbf{K}_{r}^{N} = \left [ \textstyle\begin{array}{c@{\quad}c} K_{r11}^{N - 1} - K_{r12}^{N - 1}K_{rN}K_{r21}^{N - 1} & K_{r12}^{N - 1}K_{rN}K_{r12}^{n} \\ - K_{r21}^{n}K_{rN}K_{r21}^{N - 1} & K_{r22}^{n} + K_{r21}^{n}K_{rN}K_{r12}^{n} \end{array}\displaystyle \right ], $$
(35)

where \(\mathbf{K}_{r}^{N - 1}\) is the stiffness matrix for \(n - 1\) unit cells and \(K_{rN} = (K_{r22}^{N - 1} - K_{r11}^{n})^{ - 1}\).

Then, equations describing the stress and displacement of SH wave can be established through the global stiffness matrix. With the superscripts R and L denoting the boundary conditions on the right and left sides of the phononic crystal, we can derive that

$$ \left \{ \tau _{yzr\mathrm{R}}, \tau _{yzr\mathrm{L}} \right \}^{\mathrm{T}} = \mathbf{K}_{r}^{N}\left \{ u_{r\mathrm{R}}, u_{r\mathrm{L}} \right \}^{\mathrm{T}}, $$
(36)

where \(u\)rR = \(U_{r} + R_{r}\), \(u\)rL = \(T_{r}\), \(U_{r}\), \(R_{r}\), and \(T_{r}\) are amplitudes of the incident, reflected and transmitted SH waves, and \(\tau \)yzrR and \(\tau \)yzrL are stresses.

Based on Eq. (36), the transmission coefficient of fundamental SH wave is

$$\begin{aligned} &\mathrm{TF}_{\mathrm{SH}r} \\ &= \frac{ - 2\mathrm{i}\mu _{\mathrm{A}}\omega _{r}c_{r}\beta _{Tr\mathrm{A}}K_{r21}^{N}}{\mu _{\mathrm{A}}\mu _{\mathrm{B}}\omega _{r}^{2}\beta _{Tr\mathrm{A}}\beta _{Tr\mathrm{B}} + \left ( K_{r11}^{N}K_{r22}^{N} - K_{r12}^{N}K_{r21}^{N} \right )c_{r}^{2} + \mathrm{i}\omega _{r}c_{r}\left ( \mu _{\mathrm{A}}\beta _{Tr\mathrm{A}}K_{r22}^{N} - \mu _{\mathrm{B}}\beta _{Tr\mathrm{B}}K_{r11}^{N} \right )}. \end{aligned}$$
(37)

Appendix B

The elements of transfer matrix \(\mathbf{T}_{sj}\) in Eqs. (14a), (14b) are

$$ T_{sj11} = \frac{1}{p_{sj}}\left [ \frac{q_{sj}}{2}\left ( \chi _{Lsj} + \chi _{Lsj}^{ - 1} \right ) + \chi _{Tsj} + \chi _{Tsj}^{ - 1} \right ], $$
(38)
$$ T_{sj12} = \frac{1}{h_{sj}}\left [ \mu _{j}\beta _{Lsj}\left ( \chi _{Lsj} - \chi _{Lsj}^{ - 1} \right ) - \frac{g_{sj}}{2\beta _{Tsj}}\left ( \chi _{Tsj} - \chi _{Tsj}^{ - 1} \right ) \right ], $$
(39)
$$ T_{sj13} = \frac{\mathrm{i}c_{s}}{2\mu _{j}\omega _{s}p_{sj}}\left [ - \left ( \chi _{Lsj} + \chi _{Lsj}^{ - 1} \right ) + \chi _{Tsj} + \chi _{Tsj}^{ - 1} \right ], $$
(40)
$$ T_{sj14} = - \frac{\mathrm{i}c_{s}}{2\omega _{s}h_{sj}}\left [ \beta _{Lsj}\left ( \chi _{Lsj} - \chi _{Lsj}^{ - 1} \right ) + \frac{1}{\beta _{Tsj}}\left ( \chi _{Tsj} - \chi _{Tsj}^{ - 1} \right ) \right ], $$
(41)
$$ T_{sj21} = \frac{1}{p_{sj}}\left [ \frac{q_{sj}}{2\beta _{Lsj}}\left ( \chi _{Lsj} - \chi _{Lsj}^{ - 1} \right ) - \beta _{Tsj}\left ( \chi _{Tsj} - \chi _{Tsj}^{ - 1} \right ) \right ], $$
(42)
$$ T_{sj22} = \frac{1}{h_{sj}}\left [ \mu _{j}\left ( \chi _{Lsj} + \chi _{Lsj}^{ - 1} \right ) + \frac{g_{sj}}{2}\left ( \chi _{Tsj} + \chi _{Tsj}^{ - 1} \right ) \right ], $$
(43)
$$ T_{sj23} = - \frac{\mathrm{i}c_{s}}{2\mu _{j}\omega _{s}p_{sj}}\left [ \frac{1}{\beta _{Lsj}}\left ( \chi _{Lsj} - \chi _{Lsj}^{ - 1} \right ) + \beta _{Tsj}\left ( \chi _{Tsj} - \chi _{Tsj}^{ - 1} \right ) \right ], $$
(44)
$$ T_{sj24} = \frac{\mathrm{i}c_{s}}{2\omega _{s}h_{sj}}\left [ - \left ( \chi _{Lsj} + \chi _{Lsj}^{ - 1} \right ) + \chi _{Tsj} + \chi _{Tsj}^{ - 1} \right ], $$
(45)
$$ T_{sj31} = \frac{\mathrm{i}\mu _{j}\omega _{s}q_{sj}}{c_{s}p_{sj}}\left [ \chi _{Lsj} + \chi _{Lsj}^{ - 1} - \left ( \chi _{Tsj} + \chi _{Tsj}^{ - 1} \right ) \right ], $$
(46)
$$ T_{sj32} = \frac{\mathrm{i}\mu _{j}\omega _{s}}{c_{s}h_{sj}}\left [ 2\mu _{j}\beta _{Lsj}\left ( \chi _{Lsj} - \chi _{Lsj}^{ - 1} \right ) + \frac{g_{sj}q_{sj}}{2\beta _{Tsj}}\left ( \chi _{Tsj} - \chi _{Tsj}^{ - 1} \right ) \right ], $$
(47)
$$ T_{sj33} = \frac{1}{2p_{sj}}\left [ 2\left ( \chi _{Lsj} + \chi _{Lsj}^{ - 1} \right ) + q_{sj}\left ( \chi _{Tsj} + \chi _{Tsj}^{ - 1} \right ) \right ], $$
(48)
$$ T_{sj34} = \frac{\mu _{j}}{2h_{sj}}\left [ 2\beta _{Lsj}\left ( \chi _{Lsj} - \chi _{Lsj}^{ - 1} \right ) - \frac{q_{sj}}{\beta _{Tsj}}\left ( \chi _{Tsj} - \chi _{Tsj}^{ - 1} \right ) \right ], $$
(49)
$$ T_{sj41} = \frac{\mathrm{i}\omega _{s}}{c_{s}p_{sj}}\left [ \frac{g_{sj}q_{sj}}{2\beta _{Lsj}}\left ( \chi _{Lsj} - \chi _{Lsj}^{ - 1} \right ) + 2\mu _{j}\beta _{Tsj}\left ( \chi _{Tsj} - \chi _{Tsj}^{ - 1} \right ) \right ], $$
(50)
$$ T_{sj42} = \frac{\mathrm{i}\mu _{j}\omega _{s}g_{sj}}{c_{s}h_{sj}}\left [ \chi _{Lsj} + \chi _{Lsj}^{ - 1} - \left ( \chi _{Tsj} + \chi _{Tsj}^{ - 1} \right ) \right ], $$
(51)
$$ T_{sj43} = \frac{1}{2\mu _{j}p_{sj}}\left [ \frac{g_{sj}}{\beta _{Lsj}}\left ( \chi _{Lsj} - \chi _{Lsj}^{ - 1} \right ) - 2\mu _{j}\beta _{Tsj}\left ( \chi _{Tsj} - \chi _{Tsj}^{ - 1} \right ) \right ], $$
(52)
$$ T_{sj44} = \frac{1}{2h_{sj}}\left [ g_{sj}\left ( \chi _{Lsj} + \chi _{Lsj}^{ - 1} \right ) + 2\mu _{j}\left ( \chi _{Tsj} + \chi _{Tsj}^{ - 1} \right ) \right ], $$
(53)

where \(g_{sj} = \varepsilon _{j}\beta _{Lsj}^{2} + \lambda _{j}\), \(h_{sj} = \varepsilon _{j}(\beta _{Lsj}^{2} + 1)\), \(p_{sj} = \beta _{Tsj}^{2} + 1\), \(q_{sj} = \beta _{Tsj}^{2} - 1\) and \(\chi _{Qsj} = \exp (\mathrm{i}\omega _{s}\beta _{Qsj}b_{j}/c_{s})\).

Appendix C

The elements of stiffness matrix \(\mathbf{K}_{sj}\) in Eqs. (16a), (16b) are

$$ K_{sj11} = u_{j}\kappa _{sj}\left [ 2K_{j0} - p_{sj}\left ( \beta _{Lsj}\beta _{Tsj}\xi _{sj}^{ +} \eta _{sj}^{ +} + \xi _{sj}^{ -} \eta _{sj}^{ -} - 4\beta _{Lsj}\beta _{Tsj}\chi _{Lsj}\chi _{Tsj} \right ) \right ], $$
(54)
$$ K_{sj12} = - u_{j}\kappa _{sj}\beta _{Lsj}p_{sj}\left ( \beta _{Lsj}\beta _{Tsj}\xi _{sj}^{ -} \eta _{sj}^{ +} + \xi _{sj}^{ +} \eta _{sj}^{ -} \right ), $$
(55)
$$ K_{sj13} = 2u_{j}\kappa _{sj}\beta _{Lsj}\beta _{Tsj}p_{sj}\left ( \chi _{Lsj}\eta _{sj}^{ +} - \chi _{Tsj}\xi _{sj}^{ +} \right ), $$
(56)
$$ K_{sj14} = 2u_{j}\kappa _{sj}\beta _{Lsj}p_{sj}\left ( \beta _{Lsj}\beta _{Tsj}\chi _{Tsj}\xi _{sj}^{ -} + \chi _{Lsj}\eta _{sj}^{ -} \right ), $$
(57)
$$ K_{sj21} = - \kappa _{sj}\beta _{Tsj}h_{sj}\left ( \beta _{Lsj}\beta _{Tsj}\xi _{sj}^{ +} \eta _{sj}^{ -} + \xi _{sj}^{ -} \eta _{sj}^{ +} \right ), $$
(58)
$$ K_{sj22} = \kappa _{sj}\left [ - 2\mu _{j}K_{j0} + h_{sj}\left ( \beta _{Lsj}\beta _{Tsj}\xi _{sj}^{ +} \eta _{sj}^{ +} + \xi _{sj}^{ -} \eta _{sj}^{ -} - 4\beta _{Lsj}\beta _{Tsj}\chi _{Lsj}\chi _{Tsj} \right ) \right ], $$
(59)
$$ K_{sj23} = 2\kappa _{sj}\beta _{Tsj}h_{sj}\left ( \beta _{Lsj}\beta _{Tsj}\chi _{Lsj}\eta _{sj}^{ -} + \chi _{Tsj}\xi _{sj}^{ -} \right ), $$
(60)
$$ K_{sj24} = 2\kappa _{sj}\beta _{Lsj}\beta _{Tsj}h_{sj}\left ( \chi _{Lsj}\eta _{sj}^{ +} - \chi _{Tsj}\xi _{sj}^{ +} \right ), $$
(61)
$$ K_{sj31} = K_{sj13},\qquad K_{sj32} = - K_{sj14},\qquad K_{sj33} = K_{sj11},\qquad K_{sj34} = - K_{sj12}, $$
(62–65)
$$ K_{sj41} = - K_{sj23},\qquad K_{sj42} = K_{sj24},\qquad K_{sj43} = - K_{sj21},\qquad K_{sj44} = K_{sj22}, $$
(66–69)

where \(\kappa _{sj} = \mathrm{i}\omega _{s} / (c_{s} K\)j0), \(K_{0j} = (\beta _{Lsj}^{2}\beta _{Lsj}^{2} + 1)\xi _{sj}^{ -} \eta _{sj}^{ -} + 2\beta _{Lsj}\beta _{Tsj}(\xi _{sj}^{ +} \eta _{sj}^{ +} - 4\chi _{Lsj}\chi _{Tsj})\), \(\xi _{sj}^{ \pm} = \chi _{Lsj}^{2} \pm 1\) and \(\eta _{sj}^{ \pm} = \chi _{Tsj}^{2} \pm 1\).

Appendix D

The elements of matrix \(\mathbf{D}_{s}\) in Eq. (21) are

$$ D_{s11} = \left [ \left ( - K_{s11}^{N} + 2\mathrm{i}\mu _{\mathrm{A}}\omega _{s} / c_{s} \right )\beta _{Ls\mathrm{A}} + K_{s12}^{N} \right ]\gamma _{Ls\mathrm{A}}, $$
(70)
$$ D_{s12} = - \left ( K_{s11}^{N} + K_{s12}^{N}\beta _{Ts\mathrm{A}} + \mathrm{i}\mu _{\mathrm{A}}\omega _{s}q_{s\mathrm{A}} / c_{s} \right )\gamma _{Ts\mathrm{A}}, $$
(71)
$$ D_{s13} = \left ( K_{s13}^{N}\beta _{Ls\mathrm{B}} + K_{s14}^{N} \right )\gamma _{Ls\mathrm{B}}, $$
(72)
$$ D_{s14} = \left ( - K_{s13}^{N} + K_{s14}^{N}\beta _{Ts\mathrm{B}} \right )\gamma _{Ts\mathrm{B}}, $$
(73)
$$ D_{s21} = - \left ( K_{s21}^{N}\beta _{Ls\mathrm{A}} - K_{s22}^{N} + \mathrm{i}\omega _{s}g_{s\mathrm{A}} / c_{s} \right )\gamma _{Ls\mathrm{A}}, $$
(74)
$$ D_{s22} = - \left [ K_{s21}^{N} + \left ( K_{s22}^{N} + 2\mathrm{i}\mu _{\mathrm{A}}\omega _{s} / c_{s} \right )\beta _{Ts\mathrm{A}} \right ]\gamma _{Ts\mathrm{A}}, $$
(75)
$$ D_{s23} = \left ( K_{s23}^{N}\beta _{Ls\mathrm{B}} + K_{s24}^{N} \right )\gamma _{Ls\mathrm{B}}, $$
(76)
$$ D_{s24} = \left ( - K_{s23}^{N} + K_{s24}^{N}\beta _{Ts\mathrm{B}} \right )\gamma _{Ts\mathrm{B}}, $$
(77)
$$ D_{s31} = \left ( - K_{s31}^{N}\beta _{Ls\mathrm{A}} + K_{s32}^{N} \right )\gamma _{Ls\mathrm{A}}, $$
(78)
$$ D_{s32} = - \left ( K_{s31}^{N} + K_{s32}^{N}\beta _{Ts\mathrm{A}} \right )\gamma _{Ts\mathrm{A}}, $$
(79)
$$ D_{s33} = \left [ \left ( K_{s33}^{N} - 2\mathrm{i}\mu _{\mathrm{B}}\omega _{s} / c_{s} \right )\beta _{Ls\mathrm{B}} + K_{s34}^{N} \right ]\gamma _{Ls\mathrm{B}}, $$
(80)
$$ D_{s34} = \left ( - K_{s33}^{N} + K_{s34}^{N}\beta _{Ts\mathrm{B}} - \mathrm{i}\mu _{\mathrm{B}}\omega _{s}q_{s\mathrm{B}} / c_{s} \right )\gamma _{Ts\mathrm{B}}, $$
(81)
$$ D_{s41} = \left ( - K_{s41}^{N}\beta _{Ls\mathrm{A}} + K_{s42}^{N} \right )\gamma _{Ls\mathrm{A}}, $$
(82)
$$ D_{s42} = - \left ( K_{s41}^{N} + K_{s42}^{N}\beta _{Ts\mathrm{A}} \right )\gamma _{Ts\mathrm{A}}, $$
(83)
$$ D_{s43} = \left ( K_{s43}^{N}\beta _{Ls\mathrm{B}} + K_{s44}^{N} - \mathrm{i}\omega _{s}g_{s\mathrm{B}} / c_{s} \right )\gamma _{Ls\mathrm{B}}, $$
(84)
$$ D_{s44} = \left [ - K_{s43}^{N} + \left ( K_{s44}^{N} + 2\mathrm{i}\mu _{\mathrm{B}}\omega _{s} / c_{s} \right )\beta _{Ts\mathrm{B}} \right ]\gamma _{Ts\mathrm{B}}. $$
(85)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, ZH., Wang, YZ. Nonreciprocal Transmission of Non-collinear Mixing Wave in Nonlinear Elastic Wave Metamaterial. J Elast 150, 341–366 (2022). https://doi.org/10.1007/s10659-022-09916-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-022-09916-1

Keywords

Mathematics Subject Classification

Navigation