Log in

Panel Stochastic Frontier Analysis with Positive Skewness

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

This paper focuses on solving the problem of technical efficiency estimation for panel data when residuals are right-skewed. Indeed, there is an ambiguity in stochastic frontier analysis when the residuals of the ordinary least squares estimates are right-skewed, which might indicate that either there is no inefficiency, or that the model is misspecified. To overcome and avoid this problem, we propose a panel model in which the inefficiency term has an extended-half-normal distribution. Hence, our work is an extension of existing work for the cross-section case to panel data with time varying inefficiencies. We first propose estimators of the inefficiency under the extended-half-normal distribution assuming independence between the noise and the inefficiency term. A simulation study illustrates the good performance of our procedure. An application to drinking water for forty-two Moroccan municipalities in the period 2017 to 2019 favors our extended model. Results reveal that the performance of this public sector is generally medium and therefore the waste was significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of Data and Materials

There are two types of data supporting the results of our work. Our simulated data were generated as described in section 3 of this manuscript. As for our real data, we collected them ourselves from Moroccan statistical yearbooks. So, both of them are available, under request, from the corresponding author.

Code Availability

The code is available, under request, from the corresponding author.

References

  • Aigner, D. J., Lovell, C. A. K., & Schmidt, P. J. (1977). Formulation and estimation of stochastic frontier production function models. Journal of Econometrics, 6, 21–37. https://doi.org/10.1016/0304-4076(77)90052-5

    Article  Google Scholar 

  • Almanidis, P., Qian, J., & Sickles, R. C. (2014). Stochastic frontier models with bounded inefficiency. In R. C. Sickles & W. C. Horrace (Eds.), Econometric methods and applications (pp. 47–81). Springer Science & Business Media.

    Google Scholar 

  • Battese, G. E., & Coelli, T. (1988). Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data. Journal of Econometrics, 38, 387–399. https://doi.org/10.1016/0304-4076(88)90053-X

    Article  Google Scholar 

  • Battese, G. E., & Coelli, T. (1992). Frontier production functions, technical efficiency and panel data: With application to paddy farmers in India. The Journal of Productivity Analysis, 3, 153–169. https://doi.org/10.1007/BF00158774

    Article  Google Scholar 

  • Coelli, T.J. (1996). A guide to frontier version 4.1: A computer program for stochastic frontier production and cost function estimation. Working paper No. 7/96, Cen- tre for Efficiency and Productivity Analysis (CEPA), University of New England, Australia. Preprint at http://www.uq.edu.au/economics/cepa/frontier.php

  • Coelli, T.J., & Henningsen, A. (2013). frontier: Stochastic frontier analysis. r package version 1.1. Preprint at http://CRAN.R-Project.org/package=frontier

  • Daniel, B.C., Hafner, C.M., Manner, H., & Simar, L. (2011). Asymmetries in business cycles and the role of oil production. ISBA discussion paper; 2011/32, p. 23. Preprint at http://hdl.handle.net/2078.1/92536

  • Debreu, G. (1951). The coefficient of resource utilization. Econometrica, 19, 273–292. https://doi.org/10.2307/1906814

    Article  Google Scholar 

  • Deprins, D., & Simar, L. (1989). Estimating technical inefficiencies with corrections for environmental conditions with an application to railway companies. Annals of Public and Cooperative Economics, 60, 81–102. https://doi.org/10.1111/j.1467-8292.1989.tb02010.x

    Article  Google Scholar 

  • El Mehdi, R., & Hafner, C. M. (2014). Local government efficiency: The case of Moroccan municipalities. African Development Review, 26, 88–101. https://doi.org/10.1111/1467-8268.12066

    Article  Google Scholar 

  • El Mehdi, R., & Hafner, C. M. (2014). Inference in stochastic frontier analysis with dependent error terms. Mathematics and Computers in Simulation (MATCOM), 102, 104–116. https://doi.org/10.1016/j.matcom.2013.09.008

    Article  Google Scholar 

  • El Mehdi, R., & Hafner, C. M. (2021). Panel stochastic frontier analysis with dependent error terms. International Econometric Review (IER), 13, 24–40. https://doi.org/10.33818/ier.1033722

    Article  Google Scholar 

  • Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society, 120, 253–290. https://doi.org/10.2307/2343100

    Article  Google Scholar 

  • Greene, W. H. (1990). A gamma-distributed stochastic frontier model. Journal of Econometrics, 46, 141–163. https://doi.org/10.1016/0304-4076(90)90052-U

    Article  Google Scholar 

  • Hafner, C. M., Manner, H., & Simar, L. (2018). The “wrong skewness’’ problem in stochastic frontier models: A new approach. Econometric Reviews, 37, 380–400. https://doi.org/10.1080/07474938.2016.1140284

    Article  Google Scholar 

  • Hajargasht, G. (2015). Stochastic frontiers with a Rayleigh distribution. Journal of Productivity Analysis, 44, 199–208. https://doi.org/10.1007/s11123-014-0417-8

    Article  Google Scholar 

  • Hollingsworth, B., & Peacock, S. (2008). Efficiency measurement in health and health care (1st ed.). Routledge.

    Book  Google Scholar 

  • Koopmans, T. C. (1951). An analysis of production as an efficient combination of activities. In T. C. Koopmans (Ed.), Activity analysis of production and allocation (pp. 33–97). Wiley.

    Google Scholar 

  • Kumbhakar, S. C., & Knox Lovell, C. A. (2000). Stochastic frontier analysis (1st ed.). Cambridge University Press.

    Book  Google Scholar 

  • Kumbhakar, S.C., Parameter, C.F., Zelenyuk, V. (2018). Stochastic frontier analysis: Foundations and advances. CEPA working paper series, No. WP02/2018, Centre for Efficiency and Productivity Analysis. Preprint at https://ideas.repec.org/p/qld/uqcepa/123.html

  • Lee, Y. H., & Schmidt, P. (1993). A production frontier model with flexible temporal variation in technical inefficiency. In H. Fried, C. Lovell, & S. Schmidt (Eds.), The measurement of productive efficiency: Techniques and applications (pp. 237–255). Oxford University Press.

    Chapter  Google Scholar 

  • Meeusen, W., & Van Den Broeck, J. (1977). Efficiency estimation from Cobb–Douglas production functions with composed error. Econometric Reviews, 18, 435–444. https://doi.org/10.2307/2525757

    Article  Google Scholar 

  • Migon, H.S., & Medici, E. (2001). A bayesian approach to stochastic production frontier. Technical Report n. 105, DME-IM/UFRJ

  • Simar, L., & Wilson, P. W. (2010). Inferences from cross-sectional, stochastic frontier models. Econometric Reviews, 29, 62–98. https://doi.org/10.1080/07474930903324523

    Article  Google Scholar 

  • Stevenson, R. E. (1980). Likelihood functions for generalized stochastic frontier estimation. Journal of Econometrics, 13, 57–66. https://doi.org/10.1016/0304-4076(80)90042-1

    Article  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

The two authors contributed equally to this work.

Corresponding author

Correspondence to Rachida El Mehdi.

Ethics declarations

Conflict of interest

Authors have no Conflict of interest to declare that are relevant to the content of this article.

Ethical Approval

The authors declare that this research doesn’t involve humans and/or animals.

Consent to Participate

Not applicable because no individual consent to participate is necessary for our study.

Consent for Publication

Not applicable because no individual consent to participate is necessary for our study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Proof of Theorem 1: Error Term Density When the Inefficiency Component is an Extended-Half-Normal

Proof

Knowing that the inefficiency term \(u_{i}\) is an extended-half-normal, that \(0<u_i<B\) and \(\epsilon _{it} = v_{it}- \eta \left( t\right) u_i\) and given that \(f_{\epsilon ,u}\) is the \(\left( \epsilon _i, u_i\right) \) joint density, \(f_1\) is the \(v_{it}\) density function and \(f_{\gamma }^-\) is the \(u_i\) density function, we have

$$ \begin{aligned} g^{ - } \left( {\epsilon_{i} } \right) &= \int\limits_{0}^{B} {f_{{\epsilon,u}} } \left( {\epsilon_{i} ,u_{i} } \right)du_{i} \\ &= \int\limits_{0}^{B} {f_{{\epsilon,u}} } \left( {\epsilon_{{i1}} , \ldots ,\epsilon_{{it}} , \ldots ,\epsilon_{{iT}} ,u_{i} } \right)du_{i} \\& = \int\limits_{0}^{B} {\prod\limits_{t} {f_{1} } } \left( {\epsilon_{{it}} + \eta \left( t \right) \cdot u_{i} )} \right) \cdot f_{\gamma }^{ - } \left( {u_{i} } \right)du_{i} \\& = \int\limits_{0}^{B} {\frac{1}{{\left( {2\pi } \right)^{{T/2}} \sigma _{v}^{T} }}} \exp \left\{ { - \frac{1}{2}\left[ {\frac{{\sum\limits_{t} {\left( {\epsilon_{{it}} + \eta \left( t \right) \cdot u_{i} } \right)^{2} } }}{{\sigma _{v}^{2} }}} \right]} \right\} \\ \cdot \left[ {\Phi \left( {a_{0} } \right) - \Phi \left( 0 \right)} \right]^{{\left( { - 1} \right)}} \frac{1}{{\left| \gamma \right|}}\phi \left( {a_{0} - \frac{{u_{i} }}{{\left| \gamma \right|}}} \right)du_{i} \\ \end{aligned} $$
$$ \begin{aligned} &= \int\limits_{0}^{B} {\frac{1}{{\left( {2\pi } \right)^{{T/2}} \sigma _{v}^{T} }}} \exp \left\{ { - \frac{1}{2}\left[ {\frac{{\sum\limits_{t} {\epsilon_{{it}}^{2} } + \sum\limits_{t} {\eta ^{2} } \left( t \right)u_{i}^{2} + 2\sum\limits_{t} {\epsilon_{{it}} } \eta \left( t \right) \cdot u_{i} }}{{\sigma _{v}^{2} }}} \right]} \right\} \\ &\quad \cdot \left[ {\Phi \left( {a_{0} } \right) - \Phi \left( 0 \right)} \right]^{{\left( { - 1} \right)}} \frac{1}{{|\gamma |}}\frac{1}{{\sqrt {2\pi } }}\exp \left\{ { - \frac{1}{2}\left( {a_{0} - \frac{{u_{i} }}{{\left| \gamma \right|}}} \right)^{2} } \right\}du_{i} \\ &= \frac{1}{{\left( {2\pi } \right)^{{T/2}} \sigma _{v}^{T} \left[ {\Phi \left( {a_{0} } \right) - \Phi \left( 0 \right)} \right]\left| \gamma \right|\sqrt {2\pi } }} \\ &\quad \cdot \int\limits_{0}^{B} {\exp } \left\{ { - \frac{1}{2}\left[ {\frac{{\sum\limits_{t} {\epsilon_{{it}}^{2} } + \sum\limits_{t} {\eta ^{2} } \left( t \right)u_{i}^{2} + 2\sum\limits_{t} {\epsilon_{{it}} } \eta \left( t \right) \cdot u_{i} }}{{\sigma _{v}^{2} }} + \frac{{\left( {a_{0} \left| \gamma \right| - u_{i} } \right)^{2} }}{{\gamma ^{2} }}} \right]} \right\}du_{i} \\ & = \frac{1}{{\left( {2\pi } \right)^{{T/2}} \sigma _{v}^{T} \left[ {\Phi \left( {a_{0} } \right) - \Phi \left( 0 \right)} \right]\left| \gamma \right|\sqrt {2\pi } }} \\ &\quad \cdot \int\limits_{0}^{B} {\exp } \left\{ { - \frac{1}{2}\left[ {\frac{{\sum\limits_{t} {\epsilon_{{it}}^{2} } + \sum\limits_{t} {\eta ^{2} } \left( t \right)u_{i}^{2} + 2\sum\limits_{t} {\epsilon_{{it}} } \eta \left( t \right).u_{i} }}{{\sigma _{v}^{2} }} + \frac{{B^{2} + u_{i}^{2} - 2Bu_{i} }}{{\gamma ^{2} }}} \right]} \right\}du_{i} \\ \end{aligned} $$
$$ \begin{aligned} &= \frac{1}{{\left( {2\pi } \right)^{{T/2}} \sigma _{v}^{T} \left[ {\Phi \left( {a_{0} } \right) - \Phi \left( 0 \right)} \right]|\gamma |\sqrt {2\pi } }}\exp \left\{ { - \frac{1}{2}\left[ {\frac{{\gamma ^{2} \sum\limits_{t} {\epsilon_{{it}}^{2} } + \sigma _{v}^{2} B^{2} }}{{\sigma _{v}^{2} \gamma ^{2} }}} \right]} \right\} \\ & \quad \cdot \int\limits_{0}^{B} {\exp } \left\{ { - \frac{1}{2}\left[ {\frac{{\gamma ^{2} \sum\limits_{t} {\eta ^{2} } \left( t \right)u_{i}^{2} + 2\gamma ^{2} \sum\limits_{t} {\epsilon_{{it}} } \eta \left( t \right) \cdot u_{i} + \sigma _{v}^{2} u_{i}^{2} - 2B\sigma _{v}^{2} u_{i} }}{{\sigma _{v}^{2} \gamma ^{2} }}} \right]} \right\}du_{i} \\ &= \frac{{\sigma _{*} }}{{\left( {2\pi } \right)^{{T/2}} \sigma _{v}^{T} \left[ {\Phi \left( {a_{0} } \right) - \Phi \left( 0 \right)} \right]|\gamma |}}\exp \left\{ { - \frac{1}{2}\left[ {\frac{{\gamma ^{2} \sum\limits_{t} {\epsilon_{{it}}^{2} } + \sigma _{v}^{2} B^{2} }}{{\sigma _{v}^{2} \gamma ^{2} }}} \right]} \right\} \\ & \quad \cdot \int\limits_{0}^{B} {\frac{1}{{\sigma _{*} \sqrt {2\pi } }}} \exp \left\{ { - \frac{1}{2}\left[ {\frac{{\gamma ^{2} \sum\limits_{t} {\eta ^{2} } \left( t \right) + \sigma _{v}^{2} }}{{\sigma _{v}^{2} \gamma ^{2} }}u_{i}^{2} - 2\frac{{ - \gamma ^{2} \sum\limits_{t} {\epsilon_{{it}} } \eta \left( t \right) + B\sigma _{v}^{2} }}{{\sigma _{v}^{2} \gamma ^{2} }}u_{i} } \right]} \right\}du_{i} \\ &= \frac{{\sigma _{*} }}{{\left( {2\pi } \right)^{{T/2}} \sigma _{v}^{T} \left[ {\Phi \left( {a_{0} } \right) - \Phi \left( 0 \right)} \right]\left| \gamma \right|}}\exp \left\{ { - \frac{1}{2}\left[ {\frac{{\gamma ^{2} \sum\limits_{t} {\epsilon_{{it}}^{2} } + \sigma _{v}^{2} B^{2} }}{{\sigma _{v}^{2} \gamma ^{2} }}} \right]} \right\} \\ & \quad \cdot \int\limits_{0}^{B} {\frac{1}{{\sigma _{*} \sqrt {2\pi } }}} \exp \left\{ { - \frac{1}{2}\left[ {\frac{1}{{\sigma _{*}^{2} }}u_{i}^{2} - 2\frac{{\mu _{{*i}} }}{{\sigma _{*}^{2} }}u_{i} + \frac{{\mu _{{*i}}^{2} }}{{\sigma _{*}^{2} }} - \frac{{\mu _{{*i}}^{2} }}{{\sigma _{*}^{2} }}} \right]} \right\}du_{i} \\ \end{aligned} $$
$$ \begin{aligned} &= \frac{{\sigma _{*} }}{{\left( {2\pi } \right)^{{T/2}} \sigma _{v}^{T} \left[ {\Phi \left( {a_{0} } \right) - \Phi \left( 0 \right)} \right]\left| \gamma \right|}}\exp \left\{ { - \frac{1}{2}\left[ {\frac{{\gamma ^{2} \sum\limits_{t} {\epsilon_{{it}}^{2} } + \sigma _{v}^{2} B^{2} }}{{\sigma _{v}^{2} \gamma ^{2} }} - \frac{{\mu _{{*i}}^{2} }}{{\sigma _{*}^{2} }}} \right]} \right\} \\ & \quad \cdot \int\limits_{0}^{B} {\frac{1}{{\sigma _{*} \sqrt {2\pi } }}} \exp \left\{ { - \frac{1}{2}\left[ {\frac{1}{{\sigma _{*}^{2} }}\left( {u_{i} - \mu _{{*i}} } \right)^{2} } \right]} \right\}du_{i} \\ &= \frac{{\sigma _{*} \exp \left\{ { - \frac{1}{2}a_{{*i}} } \right\}}}{{\left( {2\pi } \right)^{{T/2}} \sigma _{v}^{T} \left[ {\Phi \left( {a_{0} } \right) - \Phi \left( 0 \right)} \right]\left| \gamma \right|}}\left[ {\Phi \left( {\frac{{B - \mu _{{*i}} }}{{\sigma _{*} }}} \right) - \Phi \left( { - \frac{{\mu _{{*i}} }}{{\sigma _{*} }}} \right)} \right] \\ \end{aligned} $$

\(\square \)

Appendix 2: Proof of Theorem 2: Technical Efficiency When the Inefficiency Component is an Extended-Half-Normal

Proof

If we denote \(f_2\) the density of \((u_i\mid \epsilon _i )\), we have

$$\begin{aligned} TE_{it} & = E\left( \exp \left\{ -u_{it}\right\} \mid \epsilon _i\right) \\ &= E\left( \exp \left\{ -\eta \left( t\right) u_i\right\} \mid \left( \epsilon _{i1}, \ldots , \epsilon _{it}, \ldots , \epsilon _{iT}\right) \right) \\& = \int ^B_0\exp \left\{ -\eta \left( t\right) u_i\right\} f_2\left( u_{i} \mid \left( \epsilon _{i1}, \ldots , \epsilon _{it}, \ldots , \epsilon _{iT}\right) \right) d u_i \\&= \int ^B_0\exp \left\{ -\eta \left( t\right) u_i\right\} \frac{f_{\epsilon ,u}\left( \epsilon _{i1}, \ldots , \epsilon _{it}, \ldots , \epsilon _{iT}, u_{i} \right) }{g^-\left( \epsilon _i\right) } d u_i \\ & =\frac{1}{g^-\left( \epsilon _i\right) }\int ^B_0\exp \left\{ -\eta \left( t\right) u_i\right\} f_{\epsilon ,u}\left( \epsilon _{i1}, \ldots , \epsilon _{it}, \ldots , \epsilon _{iT}, u_{i} \right) d u_i \\ &=\frac{\sigma _* \exp \left\{ -\frac{1}{2}a_{*it}\right\} }{\left( 2\pi \right) ^{T/2}\sigma _v^T\left[ \Phi \left( a_0\right) - \Phi \left( 0\right) \right] |\gamma |} \left[ \Phi \left( \frac{B-\mu _{*it}}{\sigma _*}\right) -\Phi \left( -\frac{\mu _{*it}}{\sigma _*}\right) \right] \Big / g^-\left( \epsilon _i\right) \end{aligned}$$

\(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Mehdi, R., Hafner, C.M. Panel Stochastic Frontier Analysis with Positive Skewness. Comput Econ (2024). https://doi.org/10.1007/s10614-024-10646-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10614-024-10646-w

Keywords

Navigation