Log in

Towards a cellulose-based society: opportunities and challenges

  • Review Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The current materials predominately come from fossil feedstocks and minerals. The pressures from climate change and plastic pollution challenge us to develop a bioeconomy, replacing petroleum-based products with bio-based and biodegradable products. Cellulose emerges as a versatile biopolymer to make hydrogels for absorbents, aerogels for insulation, membranes for filters, films for packaging, and fibers for textiles and reinforcements. Wood-based cellulose is increasingly perceived by relevant stakeholders to be renewable, biodegradable, and sustainable. Can the properties of cellulose-based materials compete with conventional synthetic materials? Knowledge and discoveries concerning cellulose properties and applications are scattered throughout the scientific literature base. This paper surveys the mechanical properties of cellulose-based materials in the literature using tensile properties as indicators and visualizes the data compared with other competitive materials. The goal is to provide insights into the potential and challenges of using cellulose-based products to replace synthetic materials for a sustainable society.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Reproduced from the reference with permission from The Royal Society of Chemistry for (a) and (b); from Wiley–VCH, copyright 2018, CC-BY-4.0 for (d); from Frontiers in Chemistry, copyright 2020, CC-BY-4.0 for (e); from American Chemical Society for (c) and CC-BY-4.0 for (g); from Wiley–VCH, copyright 2011 for (h); from Elsevier, CC-BY-4.0 for (i). Both (f) and (j) are in the public domain (Wikipedia Commons)

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Reproduced from the reference with permission from Springer Nature, CC-BY-4.0 for a, and from American Chemical Society for b

Fig. 9

Reproduced from the reference with permission from Elsevier for b and d; from MDPI.COM, CC-BY-4.0 for c, e and f; a and g Wikipedia Commons

Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Reproduced from the reference with permission from John Wiley and Sons for a and b, and Elsevier for c

Fig. 20

Similar content being viewed by others

References

  • Adusumali R, Reifferscheid M, Weber H et al (2006) Mechanical properties of regenerated cellulose fibres for composites. Wiley, Hoboken, pp 119–125

    Google Scholar 

  • Ambrosio-Martín J, Lopez-Rubio A, Fabra MJ et al (2015) Assessment of ball milling methodology to develop polylactide-bacterial cellulose nanocrystals nanocomposites. J Appl Polym Sci 132:1–8

    Article  Google Scholar 

  • Amiralian N, Annamalai PK, Garvey CJ et al (2017) High aspect ratio nanocellulose from an extremophile spinifex grass by controlled acid hydrolysis. Cellulose 24:3753–3766

    Article  CAS  Google Scholar 

  • Ansari F, Galland S, Johansson M et al (2014) Cellulose nanofiber network for moisture stable, strong and ductile biocomposites and increased epoxy curing rate. Compos A Appl Sci Manuf 63:35–44

    Article  CAS  Google Scholar 

  • Ansari F, Sjöstedt A, Larsson PT et al (2015) Hierarchical wood cellulose fiber/epoxy biocomposites–materials design of fiber porosity and nanostructure. Compos A Appl Sci Manuf 74:60–68

    Article  CAS  Google Scholar 

  • Ansell M, Mwaikambo L (2009) The structure of cotton and other plant fibres. In: handbook of textile fibre structure. Elsevier pp 62–94

  • Arbelaiz A, Fernandez B, Cantero G et al (2005a) Mechanical properties of flax fibre/polypropylene composites. Influence of fibre/matrix modification and glass fibre hybridization. Compos A Appl Sci Manuf 36:1637–1644

    Article  Google Scholar 

  • Arbelaiz A, Fernandez B, Ramos J et al (2005b) Mechanical properties of short flax fibre bundle/polypropylene composites: influence of matrix/fibre modification, fibre content, water uptake and recycling. Compos Sci Technol 65:1582–1592

    Article  CAS  Google Scholar 

  • Ashori A, Menbari S, Bahrami R (2016) Mechanical and thermo-mechanical properties of short carbon fiber reinforced polypropylene composites using exfoliated graphene nanoplatelets coating. J Ind Eng Chem 38:37–42

    Article  CAS  Google Scholar 

  • Ausias G, Bourmaud A, Coroller G, Baley C (2013) Study of the fibre morphology stability in polypropylene-flax composites. Polym Degrad Stab 98:1216–1224

    Article  CAS  Google Scholar 

  • Bachmann J, Wiedemann M, Wierach P (2018) Flexural mechanical properties of hybrid epoxy composites reinforced with nonwoven made of flax fibres and recycled carbon fibres. Aerospace 5:107

    Article  Google Scholar 

  • Baez C, Considine J, Rowlands R (2014) Influence of drying restraint on physical and mechanical properties of nanofibrillated cellulose films. Cellulose 21:347–356

    Article  CAS  Google Scholar 

  • Bar M, Alagirusamy R, Das A (2018) Properties of flax-polypropylene composites made through hybrid yarn and film stacking methods. Compos Struct 197:63–71

    Article  Google Scholar 

  • Bar M, Das A, Alagirusamy R (2019) Influence of flax/polypropylene distribution in twistless thermally bonded rovings on their composite properties. Polym Compos 40:4300–4310

    Article  CAS  Google Scholar 

  • Barber AH, Cohen SR, Eitan A et al (2006) Fracture transitions at a carbon-nanotube/polymer interface. Adv Mater 18:83–87

    Article  CAS  Google Scholar 

  • Behabtu N, Young CC, Tsentalovich DE et al (2013) Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 339:182–186

    Article  CAS  PubMed  Google Scholar 

  • Belgacem M, Bataille P, Sapieha S (1994) Effect of corona modification on the mechanical properties of polypropylene/cellulose composites. J Appl Polym Sci 53:379–385

    Article  CAS  Google Scholar 

  • Bhat N, Makwana D (1988) Effects of swelling treatments on fine structure and mechanical properties of cellophane film. Text Res J 58:233–238

    Article  CAS  Google Scholar 

  • Bhattacharyya S, Salvetat J-P, Saboungi M-L (2006) Reinforcement of semicrystalline polymers with collagen-modified single walled carbon nanotubes. Appl Phys Lett 88:233119

    Article  Google Scholar 

  • Borja Y, Rieß G, Lederer K (2006) Synthesis and characterization of polypropylene reinforced with cellulose I and II fibers. J Appl Polym Sci 101:364–369

    Article  CAS  Google Scholar 

  • Bourmaud A, Beaugrand J, Shah DU et al (2018) Towards the design of high-performance plant fibre composites. Prog Mater Sci 97:347–408

    Article  Google Scholar 

  • Brosius D (2016) In defense of glass fiber. https://www.compositesworld.com/articles/in-defense-of-glass-fiber

  • Bunsell AR (2009) Handbook of tensile properties of textile and technical fibres. Elsevier

    Book  Google Scholar 

  • Cantero G, Arbelaiz A, Llano-Ponte R, Mondragon I (2003) Effects of fibre treatment on wettability and mechanical behaviour of flax/polypropylene composites. Compos Sci Technol 63:1247–1254

    Article  CAS  Google Scholar 

  • Cao L, Su D, Su Z, Chen X (2014) Fabrication of multiwalled carbon nanotube/polypropylene conductive fibrous membranes by melt electrospinning. Ind Eng Chem Res 53:2308–2317

    Article  CAS  Google Scholar 

  • Cazón P, Vázquez M, Velazquez G (2018) Novel composite films based on cellulose reinforced with chitosan and polyvinyl alcohol: Effect on mechanical properties and water vapour permeability. Polym Test 69:536–544

    Article  Google Scholar 

  • Chen C, Bu X, Feng Q, Li D (2018) Cellulose nanofiber/carbon nanotube conductive nano-network as a reinforcement template for polydimethylsiloxane nanocomposite. Polymers 10:1000

    Article  PubMed Central  Google Scholar 

  • Chen W, Tao X, Xue P, Cheng X (2005) Enhanced mechanical properties and morphological characterizations of poly (vinyl alcohol)–carbon nanotube composite films. Appl Surf Sci 252:1404–1409

    Article  CAS  Google Scholar 

  • Chen X, Zhang L, Zheng M et al (2015) Quantitative nanomechanical characterization of the van der Waals interfaces between carbon nanotubes and epoxy. Carbon 82:214–228. https://doi.org/10.1016/j.carbon.2014.10.065

    Article  CAS  Google Scholar 

  • Cheng Q, Wang S, Rials TG, Lee S-H (2007) Physical and mechanical properties of polyvinyl alcohol and polypropylene composite materials reinforced with fibril aggregates isolated from regenerated cellulose fibers. Cellulose 14:593–602

    Article  CAS  Google Scholar 

  • Cicala G, Cristaldi G, Recca G et al (2009) Properties and performances of various hybrid glass/natural fibre composites for curved pipes. Mater Des 30:2538–2542

    Article  CAS  Google Scholar 

  • Claramunt J, Ventura H, Fernández-Carrasco LJ, Ardanuy M (2017) Tensile and flexural properties of cement composites reinforced with flax nonwoven fabrics. Materials 10:215

    Article  PubMed Central  Google Scholar 

  • Clemons C (2016) Nanocellulose in spun continuous fibers: a review and future outlook. J Renew Mater 4:327–339

    Article  CAS  Google Scholar 

  • Coleman JN, Cadek M, Blake R et al (2004) High performance nanotube-reinforced plastics: understanding the mechanism of strength increase. Adv Func Mater 14:791–798. https://doi.org/10.1002/adfm.200305200

    Article  CAS  Google Scholar 

  • Cunniff PM, Fossey SA, Auerbach MA et al (1994) Mechanical and thermal properties of dragline silk from the spider Nephila clavipes. Polym Adv Technol 5:401–410

    Article  CAS  Google Scholar 

  • da Luz FS, Ramos FJHTV, Nascimento LFC et al (2018) Critical length and interfacial strength of PALF and coir fiber incorporated in epoxy resin matrix. J Mater Res Technol 7:528–534. https://doi.org/10.1016/j.jmrt.2018.04.025

    Article  CAS  Google Scholar 

  • Dalton AB, Collins S, Munoz E et al (2003) Super-tough carbon-nanotube fibres. Nature 423:703–703

    Article  CAS  PubMed  Google Scholar 

  • Dasgupta S, Hammond WB, Goddard WA (1996) Crystal structures and properties of nylon polymers from theory. J Am Chem Soc 118:12291–12301. https://doi.org/10.1021/ja944125d

    Article  CAS  Google Scholar 

  • Derbali I, Terekhina S, Guillaumat L, Ouagne P (2016) Rapid manufacturing of composite structures made of fabric flax/polypropylene. In: ECCM17—17th European conference on composite materials. Munich, Germany, pp 1–9

  • Di J, Hu D, Chen H et al (2012) Ultrastrong, foldable, and highly conductive carbon nanotube film. ACS Nano 6:5457–5464

    Article  CAS  PubMed  Google Scholar 

  • Diallo AK, Jahier C, Drolet R et al (2019) Cellulose filaments reinforced low-density polyethylene. Polym Compos 40:16–23

    Article  CAS  Google Scholar 

  • Dong Z, Ding Z, Zhang S et al (2017) Natural fibres from the bark of mulberry branches for textile application. Fibres Text Eastern Europe 25:20–25. https://doi.org/10.5604/10.5604/01.3001.0010.1683

    Article  CAS  Google Scholar 

  • Du N, Yang Z, Liu XY et al (2011) Structural origin of the strain-hardening of spider silk. Adv Func Mater 21:772–778

    Article  CAS  Google Scholar 

  • Du S, Li J, Zhang J, Wang X (2015) Microstructure and mechanical properties of silk from different components of the Antheraea pernyi cocoon. Mater Des 1980–2015(65):766–771

    Article  Google Scholar 

  • Dufresne A (2017) Cellulose nanomaterial reinforced polymer nanocomposites. Curr Opin Coll Interf Sci 29:1–8

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Davies GR (2006) Modelling the crystalline deformation of native and regenerated cellulose. Cellulose 13:291–307. https://doi.org/10.1007/s10570-006-9046-3

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Young RJ, Davies GR (2005) Modeling crystal and molecular deformation in regenerated cellulose fibers. Biomacromol 6:507–513. https://doi.org/10.1021/bm049409x

    Article  CAS  Google Scholar 

  • EPA (2019) Advancing sustainable materials management: 2017 fact sheet assessing trends in material generation, recycling, composting, combustion with energy recovery and landfilling in the United States. United State Environmental Protection Agency (EPA), Washington, DC

  • EPA (2020) containers and packaging: product-specific data. In: facts and figures about materials, waste and recycling. https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/containers-and-packaging-product-specific-data. Accessed 10 Mar 2020

  • Etcheverry M, Barbosa SE (2012) Glass fiber reinforced polypropylene mechanical properties enhancement by adhesion improvement. Materials 5:1084–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Everitt NM, Aboulkhair NT, Clifford MJ (2013) Looking for links between natural fibres’ structures and their physical properties. UK, Hindawi

    Book  Google Scholar 

  • Fahma F, Hori N, Iwata T, Takemura A (2017) PVA nanocomposites reinforced with cellulose nanofibers from oil palm empty fruit bunches (OPEFBs). Emirates J Food Agric 29(5):323–329

    Google Scholar 

  • FAO (2017) FAO yearbook of forest products 2017. Food And Agriculture Organization Of The United Nations, Rome

    Google Scholar 

  • Franciszczak P, Merijs-Meri R, Kalniņš K et al (2017) Short-fibre hybrid polypropylene composites reinforced with PET and rayon fibres–effects of SSP and interphase tailoring. Compos Struct 181:121–137

    Article  Google Scholar 

  • Fu Q, Medina L, Li Y et al (2017) Nanostructured wood hybrids for fire-retardancy prepared by clay impregnation into the cell wall. ACS Appl Mater Interf 9:36154–36163

    Article  CAS  Google Scholar 

  • Ganster J, Fink H-P (2006) Novel cellulose fibre reinforced thermoplastic materials. Cellulose 13:271–280. https://doi.org/10.1007/s10570-005-9045-9

    Article  CAS  Google Scholar 

  • Ganster J, Fink H-P, Pinnow M (2006) High-tenacity man-made cellulose fibre reinforced thermoplastics–injection moulding compounds with polypropylene and alternative matrices. Compos A Appl Sci Manuf 37:1796–1804

    Article  Google Scholar 

  • Gavillon R, Budtova T (2008) Aerocellulose: new highly porous cellulose prepared from cellulose− NaOH aqueous solutions. Biomacromol 9:269–277

    Article  CAS  Google Scholar 

  • Geethamma V, Joseph R, Thomas S (1995) Short coir fiber-reinforced natural rubber composites: effects of fiber length, orientation, and alkali treatment. J Appl Polym Sci 55:583–594

    Article  CAS  Google Scholar 

  • Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3:e1700782

    Article  PubMed  PubMed Central  Google Scholar 

  • Gibson LJ (2012) The hierarchical structure and mechanics of plant materials. J R Soc Interf 9:2749–2766

    Article  CAS  Google Scholar 

  • Gindl W, Keckes J (2006) Strain hardening in regenerated cellulose fibres. Compos Sci Technol 66:2049–2053

    Article  CAS  Google Scholar 

  • Gindl W, Keckes J (2007) Drawing of self-reinforced cellulose films. J Appl Polym Sci 103:2703–2708

    Article  CAS  Google Scholar 

  • Gindl W, Reifferscheid M, Adusumalli R-B et al (2008) Anisotropy of the modulus of elasticity in regenerated cellulose fibres related to molecular orientation. Polymer 49:792–799

    Article  CAS  Google Scholar 

  • Gojny FH, Wichmann MH, Fiedler B, Schulte K (2005) Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites–a comparative study. Compos Sci Technol 65:2300–2313

    Article  CAS  Google Scholar 

  • González I, Alcalà M, Chinga-Carrasco G et al (2014) From paper to nanopaper: evolution of mechanical and physical properties. Cellulose 21:2599–2609

    Article  Google Scholar 

  • Gonzalez JS, Ludueña LN, Ponce A, Alvarez VA (2014) Poly (vinyl alcohol)/cellulose nanowhiskers nanocomposite hydrogels for potential wound dressings. Mater Sci Eng, C 34:54–61

    Article  CAS  Google Scholar 

  • Gosline J, Guerette P, Ortlepp C, Savage K (1999) The mechanical design of spider silks: from fibroin sequence to mechanical function. J Exp Biol 202:3295–3303

    Article  CAS  PubMed  Google Scholar 

  • Hamedi MM, Hajian A, Fall AB et al (2014) Highly conducting, strong nanocomposites based on nanocellulose-assisted aqueous dispersions of single-wall carbon nanotubes. ACS Nano 8:2467–2476

    Article  CAS  PubMed  Google Scholar 

  • Han JS (1998) Properties of nonwood fibers. The Korean Society of Science and Technology Seoul, Korea, pp 3–12

    Google Scholar 

  • Heijenrath R, Peijs T (1996) Natural-fibre-mat-reinforced thermoplastic composites based on flax fibres and polypropylene. Advanced Compos Lett 5:096369359600500303

    Article  Google Scholar 

  • Henriksson M, Berglund LA, Isaksson P et al (2008) Cellulose nanopaper structures of high toughness. Biomacromol 9:1579–1585

    Article  CAS  Google Scholar 

  • Huan S, Bai L, Cheng W, Han G (2016) Manufacture of electrospun all-aqueous poly (vinyl alcohol)/cellulose nanocrystal composite nanofibrous mats with enhanced properties through controlling fibers arrangement and microstructure. Polymer 92:25–35

    Article  CAS  Google Scholar 

  • Hubbe MA, Grigsby W (2020) From nanocellulose to wood particles: a review of particle size vs. the properties of plastic composites reinforced with cellulose-based entities. BioResources 15:2030–2081

    Article  Google Scholar 

  • Huque QM, Islam R, Islam MM et al (2012) Preparation of rayon fiber-reinforced polypropylene composites by extrusion techniques. Polym Plast Technol Eng 51:116–121

    Article  CAS  Google Scholar 

  • Inai R, Kotaki M, Ramakrishna S (2005) Structure and properties of electrospun PLLA single nanofibres. Nanotechnology 16:208–213. https://doi.org/10.1088/0957-4484/16/2/005

    Article  CAS  PubMed  Google Scholar 

  • Isogai A (2017) Determination of length and width of nanocelluloses from their dilute dispersions. In: Advances in Pulp and Paper Research, Oxford 2017, Trans. of the XVIth Fund. Res. Symp. Oxford, 2017, (W. Batchelor and D. Söderberg, eds), pp 801–811, FRC, Manchester, 2018

  • Iwamoto S, Lee S-H, Endo T (2014a) Relationship between aspect ratio and suspension viscosity of wood cellulose nanofibers. Polym J 46:73

    Article  CAS  Google Scholar 

  • Iwamoto S, Yamamoto S, Lee S-H, Endo T (2014b) Solid-state shear pulverization as effective treatment for dispersing lignocellulose nanofibers in polypropylene composites. Cellulose 21:1573–1580

    Article  CAS  Google Scholar 

  • Jalal Uddin A, Araki J, Gotoh Y (2011) Toward “strong” green nanocomposites: polyvinyl alcohol reinforced with extremely oriented cellulose whiskers. Biomacromol 12:617–624

    Article  Google Scholar 

  • Jitjaicham M, Kusuktham B (2016) Preparation of paper mulberry fibers and possibility of cotton/paper mulberry yarns production. Indian J Mater Sci 2016:1498967. https://doi.org/10.1155/2016/1498967

    Article  Google Scholar 

  • Johnson RK, Zink-Sharp A, Renneckar SH, Glasser WG (2008) Mechanical properties of wetlaid lyocell and hybrid fiber-reinforced composites with polypropylene. Compos A Appl Sci Manuf 39:470–477

    Article  Google Scholar 

  • Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70:1742–1747. https://doi.org/10.1016/j.compscitech.2010.07.005

    Article  CAS  Google Scholar 

  • Jonoobi M, Mathew AP, Abdi MM et al (2012) A comparison of modified and unmodified cellulose nanofiber reinforced polylactic acid (PLA) prepared by twin screw extrusion. J Polym Environ 20:991–997

    Article  CAS  Google Scholar 

  • Kannan TG, Wu CM, Cheng KB, Wang CY (2013) Effect of reinforcement on the mechanical and thermal properties of flax/polypropylene interwoven fabric composites. J Ind Text 42:417–433

    Article  CAS  Google Scholar 

  • Khonsari A, Taghiyari HR, Karimi A, Tajvidi M (2015) Study on the effects of wood flour geometry on physical and mechanical properties of wood-plastic composites. Maderas Ciencia y tecnología 17:545–558

    CAS  Google Scholar 

  • Khoshkava V, Kamal M (2014) Effect of drying conditions on cellulose nanocrystal (CNC) agglomerate porosity and dispersibility in polymer nanocomposites. Powder Technol 261:288–298

    Article  CAS  Google Scholar 

  • Kim HC, Kim D, Lee JY et al (2019a) Effect of wet spinning and stretching to enhance mechanical properties of cellulose nanofiber filament. Int J Precis Eng Manuf Green Technol 6:567–575

    Article  Google Scholar 

  • Kim S-H, Kim E-S, Choi K et al (2019b) Rheological and mechanical properties of polypropylene composites containing microfibrillated cellulose (MFC) with improved compatibility through surface silylation. Cellulose 26:1085–1097

    Article  CAS  Google Scholar 

  • Kinloch IA, Suhr J, Lou J et al (2018) Composites with carbon nanotubes and graphene: an outlook. Science 362:547–553

    Article  CAS  PubMed  Google Scholar 

  • Kiziltas EE, Kiziltas A, Gardner DJ (2016) Rheological and mechanical properties of ultra-fine cellulose-filled thermoplastic epoxy composites. BioResources 11:4770–4780

    CAS  Google Scholar 

  • Koga H, Saito T, Kitaoka T et al (2013) Transparent, conductive, and printable composites consisting of TEMPO-oxidized nanocellulose and carbon nanotube. Biomacromol 14:1160–1165

    Article  CAS  Google Scholar 

  • Kreze T, Malej S (2003) Structural characteristics of new and conventional regenerated cellulosic fibers. Text Res J 73:675–684. https://doi.org/10.1177/004051750307300804

    Article  CAS  Google Scholar 

  • Kunchi C, Venkateshan KC, Adusumalli RB (2018) Effect of scalp position on tensile properties of single hair fibers. Int J Trichol 10:218

    Article  Google Scholar 

  • Kunugi T, Kawasumi T, Ito T (1990) Preparation of ultra-high modulus polyvinyl alcohol fibers by the zone-drawing method. J Appl Polym Sci 40:2101–2112

    Article  CAS  Google Scholar 

  • Landel RF, Nielsen LE (1974) Mechanical properties of polymers and composites. In: Mechanical properties of polymers and composites, 2nd edn. Marcel Dekker, New York, p 380

  • Larsson PT, Lindström T, Carlsson LA, Fellers C (2018) Fiber length and bonding effects on tensile strength and toughness of kraft paper. J Mater Sci 53:3006–3015

    Article  CAS  Google Scholar 

  • Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388

    Article  CAS  PubMed  Google Scholar 

  • Lee D, Ryu S (1999) The influence of fiber aspect ratio on the tensile and tear properties of short-fiber reinforced rubber. ICCM12, Paris

  • Lee K-Y, Aitomäki Y, Berglund LA et al (2014) On the use of nanocellulose as reinforcement in polymer matrix composites. Compos Sci Technol 105:15–27. https://doi.org/10.1016/j.compscitech.2014.08.032

    Article  CAS  Google Scholar 

  • Lee K-Y, Blaker JJ, Bismarck A (2009) Surface functionalisation of bacterial cellulose as the route to produce green polylactide nanocomposites with improved properties. Compos Sci Technol 69:2724–2733

    Article  CAS  Google Scholar 

  • Lee WJ, Clancy AJ, Kontturi E et al (2016) Strong and stiff: high-performance cellulose nanocrystal/poly (vinyl alcohol) composite fibers. ACS Appl Mater Interf 8:31500–31504

    Article  CAS  Google Scholar 

  • Lin J, Bang SH, Malakooti MH, Sodano HA (2017) Isolation of aramid nanofibers for high strength and toughness polymer nanocomposites. ACS Appl Mater Interf 9:11167–11175

    Article  CAS  Google Scholar 

  • Liu D, Sun X, Tian H et al (2013) Effects of cellulose nanofibrils on the structure and properties on PVA nanocomposites. Cellulose 20:2981–2989

    Article  CAS  Google Scholar 

  • Liu FP, Wolcott MP, Gardner DJ, Rials TG (1994) Characterization of the interface between cellulosic fibers and a thermoplastic matrix. Compos Interf 2:419–432

    Article  CAS  Google Scholar 

  • Liu J, Gong W, Yao Y et al (2018) Strengthening carbon nanotube fibers with semi-crystallized polyvinyl alcohol and hot-stretching. Compos Sci Technol 164:290–295

    Article  CAS  Google Scholar 

  • Liu L, Barber AH, Nuriel S, Wagner HD (2005) Mechanical properties of functionalized single-walled carbon-nanotube/poly (vinyl alcohol) nanocomposites. Adv Func Mater 15:975–980

    Article  CAS  Google Scholar 

  • Lossada F, Jiao D, Guo J et al (2019) Outstanding synergies in mechanical properties of bioinspired cellulose nanofibril nanocomposites using self-cross-linking polyurethanes. ACS Appl Polym Materi 1:3334–3342

    Article  CAS  Google Scholar 

  • Lu L, Hou W, Sun J et al (2014) Preparation of poly (vinyl alcohol) fibers strengthened using multiwalled carbon nanotubes functionalized with tea polyphenols. J Mater Sci 49:3322–3330

    Article  CAS  Google Scholar 

  • Lundahl MJ, Klar V, Ajdary R et al (2018) Absorbent filaments from cellulose nanofibril hydrogels through continuous coaxial wet spinning. ACS Appl Mater Interf 10:27287–27296

    Article  CAS  Google Scholar 

  • Madsen B, Lilholt H (2003) Physical and mechanical properties of unidirectional plant fibre composites—an evaluation of the influence of porosity. Compos Sci Technol 63:1265–1272

    Article  CAS  Google Scholar 

  • Mahjoub R, Yatim JM, Sam ARM, Hashemi SH (2014) Tensile properties of kenaf fiber due to various conditions of chemical fiber surface modifications. Constr Build Mater 55:103–113

    Article  Google Scholar 

  • Manchado ML, Valentini L, Biagiotti J, Kenny J (2005) Thermal and mechanical properties of single-walled carbon nanotubes–polypropylene composites prepared by melt processing. Carbon 43:1499–1505

    Article  CAS  Google Scholar 

  • Mander L, Liu H (2010) Comprehensive natural products II: chemistry and biology. Elsevier

    Google Scholar 

  • Martínez-Sanz M, Lopez-Rubio A, Lagaron JM (2012) Optimization of the dispersion of unmodified bacterial cellulose nanowhiskers into polylactide via melt compounding to significantly enhance barrier and mechanical properties. Biomacromol 13:3887–3899

    Article  Google Scholar 

  • Martone A, Faiella G, Antonucci V et al (2011) The effect of the aspect ratio of carbon nanotubes on their effective reinforcement modulus in an epoxy matrix. Compos Sci Technol 71:1117–1123

    Article  CAS  Google Scholar 

  • Masuda J, Torkelson JM (2008) Dispersion and major property enhancements in polymer/multiwall carbon nanotube nanocomposites via solid-state shear pulverization followed by melt mixing. Macromolecules 41:5974–5977

    Article  CAS  Google Scholar 

  • Matuana L, Stark N (2015) The use of wood fibers as reinforcements in composites. In: Biofiber reinforcements in composite materials. Elsevier, pp 648–688

  • Matveeva AY, Pyrlin SV, Ramos MM et al (2014) Influence of waviness and curliness of fibres on mechanical properties of composites. Comput Mater Sci 87:1–11

    Article  Google Scholar 

  • McIntosh D, Khabashesku VN, Barrera EV (2007) Benzoyl peroxide initiated in situ functionalization, processing, and mechanical properties of single-walled carbon nanotube− polypropylene composite fibers. J Phys Chem C 111:1592–1600

    Article  CAS  Google Scholar 

  • McIntosh D, Khabashesku VN, Barrera EV (2006) Nanocomposite fiber systems processed from fluorinated single-walled carbon nanotubes and a polypropylene matrix. Chem Mater 18:4561–4569

    Article  CAS  Google Scholar 

  • Meng Q, Li B, Li T, Feng X-Q (2017) A multiscale crack-bridging model of cellulose nanopaper. J Mech Phys Solids 103:22–39

    Article  CAS  Google Scholar 

  • Mercader C, Denis-Lutard V, Jestin S et al (2012) Scalable process for the spinning of PVA–carbon nanotube composite fibers. J Appl Polym Sci 125:E191–E196

    Article  CAS  Google Scholar 

  • Mercer BS (2016) Molecular dynamics modeling of PPTA crystals in aramid fibers. Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States)

  • Mertaniemi H, Escobedo-Lucea C, Sanz-Garcia A et al (2016) Human stem cell decorated nanocellulose threads for biomedical applications. Biomaterials 82:208–220

    Article  CAS  PubMed  Google Scholar 

  • Miao M, Shan M (2011) Highly aligned flax/polypropylene nonwoven preforms for thermoplastic composites. Compos Sci Technol 71:1713–1718

    Article  CAS  Google Scholar 

  • Migneault S, Koubaa A, Perré P (2014) Effect of fiber origin, proportion, and chemical composition on the mechanical and physical properties of wood-plastic composites. J Wood Chem Technol 34:241–261

    Article  CAS  Google Scholar 

  • Mihalic M, Sobczak L, Pretschuh C, Unterweger C (2019) Increasing the impact toughness of cellulose fiber reinforced polypropylene composites—influence of different impact modifiers and production scales. J Compos Sci 3:82

    Article  CAS  Google Scholar 

  • Mittal N, Ansari F, Gowda.V K, et al (2018) Multiscale control of nanocellulose assembly: transferring remarkable nanoscale fibril mechanics to macroscale fibers. ACS Nano 12:6378–6388. https://doi.org/10.1021/acsnano.8b01084

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi P, Toivonen MS, Ikkala O et al (2017) Aligning cellulose nanofibril dispersions for tougher fibers. Sci Rep 7:1–10

    Article  Google Scholar 

  • Mokshina N, Chernova T, Galinousky D et al (2018) Key stages of fiber development as determinants of bast fiber yield and quality. Fibers 6:20

    Article  Google Scholar 

  • Molnár G, Rodney D, Martoïa F et al (2018) Cellulose crystals plastify by localized shear. Proc Natl Acad Sci 115:7260–7265. https://doi.org/10.1073/pnas.1800098115

    Article  CAS  PubMed  Google Scholar 

  • Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941. https://doi.org/10.1039/c0cs00108b

    Article  CAS  Google Scholar 

  • Motamedian HR, Halilovic AE, Kulachenko A (2019) Mechanisms of strength and stiffness improvement of paper after PFI refining with a focus on the effect of fines. Cellulose 26:4099–4124

    Article  Google Scholar 

  • Muiruri JK, Liu S, Teo WS et al (2017) Highly biodegradable and tough polylactic acid–cellulose nanocrystal composite. ACS Sustain Chem Eng 5:3929–3937

    Article  CAS  Google Scholar 

  • Nadler M, Werner J, Mahrholz T et al (2009) Effect of CNT surface functionalisation on the mechanical properties of multi-walled carbon nanotube/epoxy-composites. Compos A Appl Sci Manuf 40:932–937

    Article  Google Scholar 

  • Nair SS, Dartiailh C, Levin DB, Yan N (2019) Highly toughened and transparent biobased epoxy composites reinforced with cellulose nanofibrils. Polymers 11:612

    Article  PubMed Central  Google Scholar 

  • Nairn J (2011) Aspect ratio requirements for nanotube-reinforced, polymer–matrix composites. Compos A Appl Sci Manuf 42:1850–1855

    Article  Google Scholar 

  • Nakamae K, Nishino T, Gotoh Y (1995) Temperature dependence of the elastic modulus of the crystalline regions of poly (ethylene 2, 6-naphthalate). Polymer 36:1401–1405

    Article  CAS  Google Scholar 

  • Napper IE, Thompson RC (2016) Release of synthetic microplastic plastic fibres from domestic washing machines: Effects of fabric type and washing conditions. Mar Pollut Bull 112:39–45

    Article  CAS  PubMed  Google Scholar 

  • Nechyporchuk O, Håkansson KM, Gowda VK et al (2019) Continuous assembly of cellulose nanofibrils and nanocrystals into strong macrofibers through microfluidic spinning. Adv Materi Technol 4:1800557

    Google Scholar 

  • Neufeld L, Stassen F, Sheppard R, Gilman T (2016) The new plastics economy: rethinking the future of plastics. Ellen MacArthur Foundation, Cowes, United Kingdom, Report, pp 1–120. https://www.ellenmacarthurfoundation.org/assets/downloads/EllenMacArthurFoundation_TheNewPlasticsEconomy_Pages.pdf

  • Nishiyama Y, Kim U-J, Kim D-Y et al (2003) Periodic disorder along ramie cellulose microfibrils. Biomacromol 4:1013–1017

    Article  CAS  Google Scholar 

  • NOKIAN TYRES PLC (2015) REINFORCING MATERIALS IN RUBBER PRODUCTS

  • Northolt MG, Boerstoel H, Maatman H et al (2001) The structure and properties of cellulose fbres spun from an anisotropic phosphoric acid solution. Polymer 42:8249–8264

    Article  CAS  Google Scholar 

  • Nunez AJ, Sturm PC, Kenny JM et al (2003) Mechanical characterization of polypropylene–wood flour composites. J Appl Polym Sci 88:1420–1428

    Article  CAS  Google Scholar 

  • OCDE (2019) Global material resources outlook to 2060: economic drivers and environmental consequences. https://doi.org/https://doi.org/10.1787/9789264307452-en.

  • Oksman K (2000) Mechanical properties of natural fibre mat reinforced thermoplastic. Appl Compos Mater 7:403–414

    Article  CAS  Google Scholar 

  • Oksman K, Skrifvars M, Selin J-F (2003) Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos Sci Technol 63:1317–1324

    Article  CAS  Google Scholar 

  • Okuda H, Young RJ, Tanaka F et al (2016) Tensile failure phenomena in carbon fibres. Carbon 107:474–481. https://doi.org/10.1016/j.carbon.2016.06.037

    Article  CAS  Google Scholar 

  • Oliva JM, Manzanares P, Ballesteros I, et al (2005) Application of Fenton’s reaction to steam explosion prehydrolysates from poplar biomass. In: twenty-sixth symposium on biotechnology for fuels and chemicals. pp 887–899

  • Osong SH, Norgren S, Engstrand P (2014) Paper strength improvement by inclusion of nano-lignocellulose to Chemi-thermomechanical pulp. Nord Pulp Pap Res J 29:309–316

    Article  CAS  Google Scholar 

  • Osorio L, Trujillo E, Lens F et al (2018) In-depth study of the microstructure of bamboo fibres and their relation to the mechanical properties. J Reinf Plast Compos 37:1099–1113

    Article  CAS  Google Scholar 

  • Österberg M, Vartiainen J, Lucenius J et al (2013) A fast method to produce strong NFC films as a platform for barrier and functional materials. ACS Appl Mater Interf 5:4640–4647. https://doi.org/10.1021/am401046x

    Article  CAS  Google Scholar 

  • Paiva M, Zhou B, Fernando K et al (2004) Mechanical and morphological characterization of polymer–carbon nanocomposites from functionalized carbon nanotubes. Carbon 42:2849–2854

    Article  CAS  Google Scholar 

  • Panthapulakkal S, Sain M (2012) Preparation and characterization of cellulose nanofibril films from wood fibre and their thermoplastic polycarbonate composites. Int J Polym Sci 2012: https://doi.org/10.1155/2012/381342

    Article  CAS  Google Scholar 

  • Park Y, You M, Shin J et al (2019) Thermal conductivity enhancement in electrospun poly (vinyl alcohol) and poly (vinyl alcohol)/cellulose nanocrystal composite nanofibers. Sci Rep 9:1–10

    Google Scholar 

  • Peelman N, Ragaert P, Verguldt E et al (2016) Applicability of biobased packaging materials for long shelf-life food products. Packag Res 1:7–20. https://doi.org/10.1515/pacres-2016-0002

    Article  Google Scholar 

  • Peng J, Ellingham T, Sabo R et al (2014) Short cellulose nanofibrils as reinforcement in polyvinyl alcohol fiber. Cellulose 21:4287–4298

    Article  CAS  Google Scholar 

  • Peng J, Ellingham T, Sabo R et al (2015) Oriented polyvinyl alcohol films using short cellulose nanofibrils as a reinforcement. J Appl Polym Sci 132:1–10

    Article  Google Scholar 

  • Peng Y, Gallegos SA, Gardner DJ et al (2016) Maleic anhydride polypropylene modified cellulose nanofibril polypropylene nanocomposites with enhanced impact strength. Polym Compos 37:782–793

    Article  CAS  Google Scholar 

  • Peresin MS, Habibi Y, Zoppe JO et al (2010) Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromol 11:674–681

    Article  CAS  Google Scholar 

  • Plastics Europe. (2019) Plastics‐The Facts 2019, An analysis of European plastics production, demand and waste data. https://www.plasticseurope.org/application/files/9715/7129/9584/FINAL_web_version_Plastics_the_facts2019_14102019.pdf. Accessed 21 Aug 2020

  • Prashantha K, Soulestin J, Lacrampe M-F et al (2009) Masterbatch-based multi-walled carbon nanotube filled polypropylene nanocomposites: assessment of rheological and mechanical properties. Compos Sci Technol 69:1756–1763

    Article  CAS  Google Scholar 

  • Qi JQ, **e JL, Huang XY et al (2014) Influence of characteristic inhomogeneity of bamboo culm on mechanical properties of bamboo plywood: effect of culm height. J Wood Sci 60:396–402

    Article  CAS  Google Scholar 

  • Qiu W, Zhang F, Endo T, Hirotsu T (2003) Preparation and characteristics of composites of high-crystalline cellulose with polypropylene: effects of maleated polypropylene and cellulose content. J Appl Polym Sci 87:337–345

    Article  CAS  Google Scholar 

  • Radkar SS, Amiri A, Ulven CA (2019) Tensile behavior and diffusion of moisture through flax fibers by desorption method. Sustainability 11:3558

    Article  CAS  Google Scholar 

  • Risnasari I, Herawati E, Sirait E (2018) Characterization of Polypropylene Composite Reinforced with Wood Flour or Cellulose Fiber. IOP Publishing p 012002

  • Robles E, Urruzola I, Labidi J, Serrano L (2015) Surface-modified nano-cellulose as reinforcement in poly (lactic acid) to conform new composites. Ind Crops Prod 71:44–53

    Article  CAS  Google Scholar 

  • Rohatgi A (2018) WebPlotDigitizer Version: 4.1. Austin, TX

  • Rusch F, Ceolin GB, Hillig É (2019) Morphology, density and dimensions of bamboo fibers: a bibliographical compilation. Pesquisa Agropecuária Trop 49:1–12

    Article  Google Scholar 

  • Rusli R, Eichhorn SJ (2008) Determination of the stiffness of cellulose nanowhiskers and the fiber-matrix interface in a nanocomposite using Raman spectroscopy. Appl Phys Lett 93:033111

    Article  Google Scholar 

  • Saba N, Mohammad F, Pervaiz M et al (2017) Mechanical, morphological and structural properties of cellulose nanofibers reinforced epoxy composites. Int J Biol Macromol 97:190–200

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Uematsu T, Kimura S et al (2011) Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials. Soft Matter 7:8804–8809

    Article  CAS  Google Scholar 

  • Salajkova M, Valentini L, Zhou Q, Berglund LA (2013) Tough nanopaper structures based on cellulose nanofibers and carbon nanotubes. Compos Sci Technol 87:103–110

    Article  CAS  Google Scholar 

  • Sanders JE, Han Y, Rushing TS, Gardner DJ (2019) Electrospinning of cellulose nanocrystal-filled poly (Vinyl Alcohol) solutions: material property assessment. Nanomaterials 9:805

    Article  PubMed Central  Google Scholar 

  • Schaider LA, Balan SA, Blum A et al (2017) Fluorinated compounds in U.S. fast food packaging. Environ Sci Technol Lett 4:105–111. https://doi.org/10.1021/acs.estlett.6b00435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sehaqui H, Ezekiel Mushi N, Morimune S et al (2012) Cellulose nanofiber orientation in nanopaper and nanocomposites by cold drawing. ACS Appl Mater Interf 4:1043–1049

    Article  CAS  Google Scholar 

  • Sehaqui H, Zhou Q, Ikkala O, Berglund LA (2011) Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromol 12:3638–3644

    Article  CAS  Google Scholar 

  • Shamsuddin S-R, Lee K-Y, Bismarck A (2016) Ductile unidirectional continuous rayon fibre-reinforced hierarchical composites. Compos A Appl Sci Manuf 90:633–641

    Article  CAS  Google Scholar 

  • Shojaeiarani J, Bajwa DS, Stark NM (2018) Green esterification: a new approach to improve thermal and mechanical properties of poly (lactic acid) composites reinforced by cellulose nanocrystals. J Appl Polym Sci 135:46468

    Article  Google Scholar 

  • Shrestha S, Montes F, Schueneman GT et al (2018) Effects of aspect ratio and crystal orientation of cellulose nanocrystals on properties of poly(vinyl alcohol) composite fibers. Compos Sci Technol 167:482–488. https://doi.org/10.1016/j.compscitech.2018.08.032

    Article  CAS  Google Scholar 

  • Sixta H, Michud A, Hauru L et al (2015) Ioncell-F: a high-strength regenerated cellulose fibre. Nord Pulp Pap Res J 30:43–57

    Article  CAS  Google Scholar 

  • Song M, Yu H, Gu J et al (2018) Chemical cross-linked polyvinyl alcohol/cellulose nanocrystal composite films with high structural stability by spraying Fenton reagent as initiator. Int J Biol Macromol 113:171–178

    Article  CAS  PubMed  Google Scholar 

  • Sun S, Mitchell JR, MacNaughtan W et al (2010) Comparison of the mechanical properties of cellulose and starch films. Biomacromol 11:126–132

    Article  CAS  Google Scholar 

  • Suzuki A, Koide C (2000) High-performance poly(ethylene-2,6-naphthalate) fiber prepared by high-tension annealing. J Polym Sci, Part B: Polym Phys 38:61–67. https://doi.org/10.1002/(SICI)1099-0488(20000101)38:1%3c61::AID-POLB7%3e3.0.CO;2-C

    Article  CAS  Google Scholar 

  • Suzuki K, Okumura H, Kitagawa K et al (2013) Development of continuous process enabling nanofibrillation of pulp and melt compounding. Cellulose 20:201–210

    Article  CAS  Google Scholar 

  • Suzuki K, Sato A, Okumura H et al (2014) Novel high-strength, micro fibrillated cellulose-reinforced polypropylene composites using a cationic polymer as compatibilizer. Cellulose 21:507–518

    Article  CAS  Google Scholar 

  • Takakura A, Beppu K, Nishihara T et al (2019) Strength of carbon nanotubes depends on their chemical structures. Nat Commun 10:1–7

    Article  CAS  Google Scholar 

  • Textile Exchange (2020) Preferred fiber & materials market report

  • Thistlethwaite T, Jakeways R, Ward I (1988) The crystal modulus and structure of oriented poly (ethylene terephthalate). Polymer 29:61–69

    Article  CAS  Google Scholar 

  • Toivonen MS, Kaskela A, Rojas OJ et al (2015) Ambient-dried cellulose nanofibril aerogel membranes with high tensile strength and their use for aerosol collection and templates for transparent, flexible devices. Adv Func Mater 25:6618–6626

    Article  CAS  Google Scholar 

  • Toivonen MS, Onelli OD, Jacucci G et al (2018) Anomalous-diffusion-assisted brightness in white cellulose nanofibril membranes. Adv Mater 30:1704050

    Article  Google Scholar 

  • Tomczak F, Sydenstricker THD, Satyanarayana KG (2007) Studies on lignocellulosic fibers of Brazil. Part II: morphology and properties of Brazilian coconut fibers. Compos A Appl Sci Manuf 38:1710–1721

    Article  Google Scholar 

  • Tomé LC, Pinto RJ, Trovatti E et al (2011) Transparent bionanocomposites with improved properties prepared from acetylated bacterial cellulose and poly (lactic acid) through a simple approach. Green Chem 13:419–427

    Article  Google Scholar 

  • Torres-Rendon JG, Schacher FH, Ifuku S, Walther A (2014) Mechanical performance of macrofibers of cellulose and chitin nanofibrils aligned by wet-stretching: a critical comparison. Biomacromol 15:2709–2717

    Article  CAS  Google Scholar 

  • Tummala GK, Joffre T, Rojas R et al (2017) Strain-induced stiffening of nanocellulose-reinforced poly (vinyl alcohol) hydrogels mimicking collagenous soft tissues. Soft Matter 13:3936–3945

    Article  CAS  PubMed  Google Scholar 

  • Tze WT, O’Neill SC, Tripp CP et al (2007) Evaluation of load transfer in the cellulosic-fiber/polymer interphase using a micro-Raman tensile test. Wood Fiber Sci 39:184–195

    CAS  Google Scholar 

  • Uddin AJ, Watanabe A, Gotoh Y et al (2012) From “Strong” to “Much Stronger”: utilization of green tea extract dispersant for SWCNT-reinforced polymer composites. Macromol Mater Eng 297:1114–1123

    Article  CAS  Google Scholar 

  • Unterweger C, Brüggemann O, Fürst C (2014) Synthetic fibers and thermoplastic short-fiber-reinforced polymers: properties and characterization. Polym Compos 35:227–236

    Article  CAS  Google Scholar 

  • USDA A (2001) The classification of cotton. Agricultural handbook 566

  • Usov I, Nyström G, Adamcik J et al (2015) Understanding nanocellulose chirality and structure–properties relationship at the single fibril level. Nat Commun 6:1–11

    Article  Google Scholar 

  • Vallejos ME, Felissia FE, Area MC et al (2016) Nanofibrillated cellulose (CNF) from eucalyptus sawdust as a dry strength agent of unrefined eucalyptus handsheets. Carbohyd Polym 139:99–105

    Article  CAS  Google Scholar 

  • Van den Oever M, Bos H (1998) Critical fibre length and apparent interfacial shear strength of single flax fibre polypropylene composites. Adv Compos Lett 7:096369359800700303

    Google Scholar 

  • Van den Oever M, Bos H, Van Kemenade M (2000) Influence of the physical structure of flax fibres on the mechanical properties of flax fibre reinforced polypropylene composites. Appl Compos Mater 7:387–402

    Article  Google Scholar 

  • Vigolo B, Penicaud A, Coulon C et al (2000) Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 290:1331–1334

    Article  CAS  PubMed  Google Scholar 

  • Virk AS, Hall W, Summerscales J (2012) Modulus and strength prediction for natural fibre composites. Mater Sci Technol 28:864–871

    Article  CAS  Google Scholar 

  • Virtanen S, Vartianen J, Setälä H et al (2014) Modified nanofibrillated cellulose–polyvinyl alcohol films with improved mechanical performance. RSC Adv 4:11343–11350. https://doi.org/10.1039/c3ra46287k

    Article  CAS  Google Scholar 

  • Wakabayashi M, Fujisawa S, Saito T, Isogai A (2020) Nanocellulose film properties tunable by controlling degree of fibrillation of TEMPO-oxidized cellulose. Front Chem 8:37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walther A, Timonen JV, Díez I et al (2011) Multifunctional high-performance biofibers based on wet-extrusion of renewable native cellulose nanofibrils. Adv Mater 23:2924–2928

    Article  CAS  PubMed  Google Scholar 

  • Wanasekara ND, Michud A, Zhu C et al (2016) Deformation mechanisms in ionic liquid spun cellulose fibers. Polymer 99:222–230

    Article  CAS  Google Scholar 

  • Wang L, Roach AW, Gardner DJ, Han Y (2018) Mechanisms contributing to mechanical property changes in composites of polypropylene reinforced with spray-dried cellulose nanofibrils. Cellulose 25:439–448

    Article  Google Scholar 

  • Wang S, Jiang F, Xu X et al (2017) Super-strong, super-stiff macrofibers with aligned, long bacterial cellulose nanofibers. Adv Mater 29:1702498

    Article  Google Scholar 

  • Wang W-J, Wang W-W, Shao Z-Q (2014) Surface modification of cellulose nanowhiskers for application in thermosetting epoxy polymers. Cellulose 21:2529–2538

    Article  CAS  Google Scholar 

  • Wei Y, Lai D, Zou L, et al (2015) Gel spinning of PVA composite fibers with high content of multi-walled carbon nanotubes and graphene oxide hybrids. IOP Publishing, p 012052

  • Wernik J, Meguid S (2014) On the mechanical characterization of carbon nanotube reinforced epoxy adhesives. Mater Des 59:19–32

    Article  CAS  Google Scholar 

  • Wu C-M, Lai W-Y, Wang C-Y (2016) Effects of surface modification on the mechanical properties of flax/β-polypropylene composites. Materials 9:314

    Article  PubMed Central  Google Scholar 

  • Wu D, Wu L, Zhou W et al (2010) Relations between the aspect ratio of carbon nanotubes and the formation of percolation networks in biodegradable polylactide/carbon nanotube composites. J Polym Sci, Part B: Polym Phys 48:479–489

    Article  CAS  Google Scholar 

  • **a H, Wang Q, Li K, Hu G (2004) Preparation of polypropylene/carbon nanotube composite powder with a solid-state mechanochemical pulverization process. J Appl Polym Sci 93:378–386

    Article  CAS  Google Scholar 

  • Xu X, Uddin AJ, Aoki K et al (2010) Fabrication of high strength PVA/SWCNT composite fibers by gel spinning. Carbon 48:1977–1984

    Article  CAS  Google Scholar 

  • Yan L, Chouw N, Jayaraman K (2014) Flax fibre and its composites–a review. Compos B Eng 56:296–317

    Article  CAS  Google Scholar 

  • Yang H-S, Gardner DJ (2011) Mechanical properties of cellulose nanofibril-filled polypropylene composites. Wood Fiber Sci 43:143–152

    CAS  Google Scholar 

  • Yang Q, Fujisawa S, Saito T, Isogai A (2012) Improvement of mechanical and oxygen barrier properties of cellulose films by controlling drying conditions of regenerated cellulose hydrogels. Cellulose 19:695–703. https://doi.org/10.1007/s10570-012-9683-7

    Article  CAS  Google Scholar 

  • Yang Y, Ramirez C, Wang X et al (2017) Impact of carbon nanotube defects on fracture mechanisms in ceramic nanocomposites. Carbon 115:402–408

    Article  CAS  Google Scholar 

  • Yao J, Chen S, Chen Y et al (2017) Macrofibers with high mechanical performance based on aligned bacterial cellulose nanofibers. ACS Appl Mater Interf 9:20330–20339

    Article  CAS  Google Scholar 

  • Yee MJ, Mubarak N, Khalid M et al (2018) Synthesis of polyvinyl alcohol (PVA) infiltrated MWCNTs buckypaper for strain sensing application. Sci Rep 8:1–16

    Article  CAS  Google Scholar 

  • Yin W, Shan L, Lu H et al (2016) Impact resistance of oil-immersed lignum vitae. Sci Rep 6:30090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang JM, Hua Q, Reynolds CT et al (2017) Preparation of high modulus poly(Ethylene Terephthalate): influence of molecular weight, extrusion, and drawing parameters. Int J Polym Sci 2017:1–10. https://doi.org/10.1155/2017/2781425

    Article  CAS  Google Scholar 

  • Zhang X, Liu T, Sreekumar T et al (2004) Gel spinning of PVA/SWNT composite fiber. Polymer 45:8801–8807

    Article  CAS  Google Scholar 

  • Zhang X, Liu T, Sreekumar T et al (2003) Poly (vinyl alcohol)/SWNT composite film. Nano Lett 3:1285–1288

    Article  CAS  Google Scholar 

  • Zhao M, Ansari F, Takeuchi M et al (2018) Nematic structuring of transparent and multifunctional nanocellulose papers. Nanoscale Horiz 3:28–34. https://doi.org/10.1039/C7NH00104E

    Article  CAS  PubMed  Google Scholar 

  • Zhao P, Wang K, Yang H et al (2007) Excellent tensile ductility in highly oriented injection-molded bars of polypropylene/carbon nanotubes composites. Polymer 48:5688–5695

    Article  CAS  Google Scholar 

  • Zhu J, Zhu H, Njuguna J, Abhyankar H (2013) Recent development of flax fibres and their reinforced composites based on different polymeric matrices. Materials 6:5171–5198

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The research was supported by the USDA NIFA Agriculture and Food Research Initiative program under grant number of 2018-67010-27906.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Cai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wang, L., Gardner, D.J. et al. Towards a cellulose-based society: opportunities and challenges. Cellulose 28, 4511–4543 (2021). https://doi.org/10.1007/s10570-021-03771-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-021-03771-4

Keywords

Navigation