Log in

Chitosan@Tannic Acid-Supported Fe3O4 Magnetic Bionanocomposite as Green and Recyclable Catalyst for the Synthesis of Benzo[g]thiazolo[3,2-a]quinolones Based on Nitroketene N,S-Acetal

  • Original Article
  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

To prepare an efficient magnetic bionanocomposite and to protect ferrite nanoparticles from oxidation and aggregation, the prepared Fe3O4 was supported by chitosan and tannic acid as the first and second coating layers respectively, and the presence of empty orbitals of Fe3O4 and multiple phenol groups on the surface of bionanocomposite leads to the activation of raw materials in acid catalyst reactions. Fe3O4@chitosan-tannic acid was fully characterized by FT-IR, TGA, EDX, VSM, FESEM, and TEM. To examine the catalytic activity, it was applied for the first time for the synthesis of a series of 4-nitro-5-phenyl-1,2-dihydro-5 H-benzo[g]thiazolo[3,2-a]quinolines-6,11-dione with potent antitumor activity from β-nitro-thiazolidine, 2-hydroxy-1,4-naphthoquinone and various aromatic aldehydes via an aza-ene reaction followed by intramolecular cyclization. Some of this procedure’s prominent advantages include obtaining the products in short reaction times with high yields, the environmentally benign character of the catalyst, and the facility of catalyst separation and recycling of it due to the existence of the superparamagnetic core.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tamoradi T, Kal-Koshvandi A, Karmakar B, Maleki A (2021) Immobilization of La on THH-CO2H@Fe3O4 nanocomposite for the synthesis of one-pot multicomponent reactions. Mater Res Express 8:056101

    Article  CAS  Google Scholar 

  2. Zhang Y, Zhao Y, **a C (2009) Basic ionic liquids supported on hydroxyapatite-encapsulated g-Fe2O3 nanocrystallites: heterogeneous catalyst for aqueous knoevenagel condensation. J Mol Catal A Chem 306:107–112

    Article  CAS  Google Scholar 

  3. Friend CM, Xu B (2017) Heterogeneous catalysis: a central science for a sustainable future. Acc Chem Res 50:517–521

    Article  CAS  PubMed  Google Scholar 

  4. Heitbaum M, Glorius F, Escher I (2006) Asymmetric heterogeneous catalysis. Angew Chem 45:4732–4762

    Article  CAS  Google Scholar 

  5. Gawande MB, Branco PS, Varma RS (2013) Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies. Chem Soc Rev 42:3371–3393

    Article  CAS  PubMed  Google Scholar 

  6. Barbaro P, Liguori F, Linares N, Marrodan CM (2012) Heterogeneous bifunctional metal/acid catalysts for selective chemical processes. Eur J Inorg Chem 2012:3807–3823

    Article  CAS  Google Scholar 

  7. Debecker DP, Gaigneaux EM, Busca G (2009) Exploring, tuning, and exploiting the basicity of hydrotalcites for applications in heterogeneous catalysis. Chem Eur J 15:3920–3935

    Article  CAS  PubMed  Google Scholar 

  8. Gawande MB, Pandey RK, Jayaram RV (2012) Role of mixed metal oxides in catalysis science-versatile applications in organic synthesis. Catal Sci Technol 2:1113–1125

    Article  CAS  Google Scholar 

  9. Corma A (2003) State of the art and future challenges of zeolites as catalysts. J Catal 216:298–312

    Article  CAS  Google Scholar 

  10. Othman MR, Helwani Z, Fernando WJN (2009) Synthetic hydrotalcites from different routes and their application as catalysts and gas adsorbents: a review. Appl Organomet Chem 23:335–346

    Article  CAS  Google Scholar 

  11. Gawande MB, Polshettiwar V, Varma RS, Jayaram RV (2007) An efficient and chemoselective cbz-protection of amines using silica–sulfuric acid at room temperature. Tetrahedron Lett 48:8170–8173

    Article  CAS  Google Scholar 

  12. Mohamadzadeh E, Gordi Z (2022) Application of Fe3O4/SiO2/CeO2 nanocomposite, an efficient and magnetic catalyst, to synthesize 2,3-dihydroquinazolin-4(1H)-ones derivatives. Iran J Catal 12:169

    CAS  Google Scholar 

  13. Astruc D, Lu F, Aranzaes JR (2005) Reduced transition metal colloids: a novel family of reusable catalysts. Angew Chem Int Ed 44:7852–7872

    Article  CAS  Google Scholar 

  14. Baeza A, Guillena G, Ramón DJ (2016) Magnetite and Metal-Impregnated Magnetite Catalysts in Organic synthesis: a very old concept with new promising perspectives. ChemCatChem 8:49–67

    Article  CAS  Google Scholar 

  15. Wang D, Astruc D (2014) Fast-growing field of magnetically recyclable nanocatalysts. Chem Rev 114:6949–6985

    Article  CAS  PubMed  Google Scholar 

  16. Sayyahi S, Fallah-Mehrjardi M, Saghanezhad SJ (2021) Synthesis of Heterocyclic Compounds by catalysts supported on Nano-Magnetite (Fe3O4)-An update. Mini-Rev Org Chem 18:11–26

    Article  CAS  Google Scholar 

  17. Ranganath KV, Glorius F (2011) Superparamagnetic nanoparticles for asymmetric catalysis-a perfect match. Catal Sci Technol 1:13–22

    Article  CAS  Google Scholar 

  18. Bonyasi F, Hekmati M, Veisi H (2017) Preparation of core/shell nanostructure Fe3O4@ PEG400-SO3H as heterogeneous and magnetically recyclable nanocatalyst for one-pot synthesis of substituted pyrroles by Paal-Knorr reaction at room temperature. J Colloid Interface Sci 496:177–187

    Article  CAS  PubMed  Google Scholar 

  19. Rafiee E, Joshaghani M, Abadi PGS (2018) Unmodified Fe3O4 nanostructure promoted with external magnetic field: safe, magnetically recoverable, and efficient nanocatalyst for N-and C-alkylation reactions in green conditions. Res Chem Intermed 44:2503–2522

    Article  CAS  Google Scholar 

  20. Alamgholiloo H, Rostamnia S, Zhang K, Lee TH, Lee YS, Varma RS, Shokouhimehr M (2020) Boosting aerobic oxidation of alcohols via synergistic effect between TEMPO and a composite Fe3O4/Cu-BDC/GO nanocatalyst. ACS Omega 5:5182–5191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li ZX, Luo D, Li MM, **ng XF, Ma ZZ, Xu H (2017) Recyclable Fe3O4 nanoparticles catalysts for aza-michael addition of acryl amides by magnetic field. Catalysts 7:219

    Article  Google Scholar 

  22. Liu J, Li K, Song Y, Song C, Guo X (2021) Selective hydrogenation of CO2 to hydrocarbons: effects of Fe3O4 particle size on reduction, carburization, and catalytic performance. Energy Fuels 35:10703–10709

    Article  CAS  Google Scholar 

  23. Nourmohammadi M, Rouhani S, Azizi S, Maaza M, Msagati TA, Rostamnia S, Shokouhimehr M (2021) Magnetic nanocomposite of crosslinked chitosan with 4,6-diacetylresorcinol for gold immobilization (Fe3O4@CS/DAR-Au) as a catalyst for an efficient one-pot synthesis of propargylamine. Mater Today Commun 29:102798

    Article  CAS  Google Scholar 

  24. Baig RN, Varma RS (2013) Magnetically retrievable catalysts for organic synthesis. Nat Commun 49:752–770

    CAS  Google Scholar 

  25. Verma S, Kujur S, Sharma R, Pathak DD (2022) Cucurbit[6]uril-Supported Fe3O4 magnetic nanoparticles catalyzed Green and sustainable synthesis of 2-Substituted Benzimidazoles via Acceptorless Dehydrogenative Coupling. ACS Omega 7:9754–9764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen MN, Mo LP, Cui ZS, Zhang ZH (2019) Magnetic nanocatalysts: synthesis and application in multicomponent reactions. Curr Opin Green Sustain Chem 15:27–37

    Article  Google Scholar 

  27. Kumar M, Dosanjh HS, Singh J, Monir K, Singh H (2020) Review on magnetic nanoferrites and their composites as alternatives in waste water treatment: synthesis, modifications and applications. Environ Sci Water Res Technol 6:491–514

    Article  CAS  Google Scholar 

  28. Zhang DH, Li GD, Li JX, Chen JS (2008) One-pot synthesis of Ag–Fe3O4 nanocomposite: a magnetically recyclable and efficient catalyst for epoxidation of styrene. Chem Commun 29:3414–3416

    Article  Google Scholar 

  29. Eisavi R, Ahmadi F (2022) Fe3O4@ SiO2-PMA-Cu magnetic nanoparticles as a novel catalyst for green synthesis of β-thiol-1,4-disubstituted-1,2,3-triazoles. Sci Rep 12:1–19

    Article  Google Scholar 

  30. Lu AH, Salabas EE, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244

    Article  CAS  Google Scholar 

  31. Polshettiwar V, Luque R, Fihri A, Zhu H, Bouhrara M, Basset JM (2011) Magnetically recoverable nanocatalysts. Chem Rev 111:3036–3075

    Article  CAS  PubMed  Google Scholar 

  32. Shchipunov Y (2012) Bionanocomposites: Green sustainable materials for the near future. Pure Appl Chem 84:2579–2607

    Article  CAS  Google Scholar 

  33. Eivazzadeh-Keihan R, Bahrami S, Ghafori Gorab M, Sadat Z, Maleki A (2022) Functionalization of magnetic nanoparticles by creatine as a novel and efficient catalyst for the green synthesis of 2-amino-4H-chromene derivatives. Sci Rep 12:1–12

    Article  Google Scholar 

  34. Eivazzadeh-Keihan R, Radinekiyan F, Asgharnasl S, Maleki A, Bahreinizad H (2020) A natural and eco-friendly magnetic nanobiocomposite based on activated chitosan for heavy metals adsorption and the in-vitro hyperthermia of cancer therapy. J Mater Res Technol 9:12244–12259

    Article  CAS  Google Scholar 

  35. Eivazzadeh-Keihan R, Khalili F, Khosropour N, Aliabadi HAM, Radinekiyan F, Sukhtezari S, Lanceros-Méndez S (2021) Hybrid bionanocomposite containing magnesium hydroxide nanoparticles embedded in a carboxymethyl cellulose hydrogel plus silk fibroin as a scaffold for wound dressing applications. ACS Appl Mater Interfaces 13:33840–33849

    Article  CAS  PubMed  Google Scholar 

  36. Dekamin MG, Ilkhanizadeh S, Latifidoost Z, Daemi H, Karimi Z, Barikani M (2014) Alginic acid: a highly efficient renewable and heterogeneous biopolymeric catalyst for one-pot synthesis of the Hantzsch 1,4-dihydropyridines. RSC Adv 4:56658–56664

    Article  CAS  Google Scholar 

  37. Kamalzare M, Bayat M, Maleki A (2020) Green and efficient three-component synthesis of 4H-pyran catalysed by CuFe2O4@starch as a magnetically recyclable bionanocatalyst. R Soc Open Sci 7:200385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Maleki A, Ghamari N, Kamalzare M (2014) Chitosan-supported Fe3O4 nanoparticles: a magnetically recyclable heterogeneous nanocatalyst for the syntheses of multifunctional benzimidazoles and benzodiazepines. RSC Adv 4:9416

    Article  CAS  Google Scholar 

  39. Kamalzare M, Ahghari MR, Bayat M, Maleki A (2021) Fe3O4@ chitosan-tannic acid bionanocomposite as a novel nanocatalyst for the synthesis of pyranopyrazoles. Sci Rep 11:1–10

    Article  Google Scholar 

  40. Rahimi J, Bahrami N, Niksefat M, Kamalzare M, Maleki A (2020) A novel biodegradable magnetic bionanocomposite based on tannic acid as a biological molecule for selective oxidation of alcohols. Solid State Sci 105:106284

    Article  CAS  Google Scholar 

  41. Inaloo ID, Majnooni S (2018) Eco-efficient ultrasonic‐responsive synthesis of primary O‐alkyl and O‐aryl thiocarbamates using Brønsted acid ionic liquid [H‐NMP][HSO4] in aqueous media at room temperature. ChemistrySelect 3:4095–4100

    Article  CAS  Google Scholar 

  42. Modarresi-Alam AR, Inaloo ID, Kleinpeter E (2012) Synthesis of primary thiocarbamates by silica sulfuric acid as effective reagent under solid-state and solution conditions. J Mol Struct 1024:156–162

    Article  CAS  Google Scholar 

  43. Sardarian AR, Inaloo ID (2015) 4-Dodecylbenzenesulfonic acid (DBSA) promoted solvent-free diversity-oriented synthesis of primary carbamates, S-thiocarbamates and ureas. RSC Adv 5:76626–76641

    Article  CAS  Google Scholar 

  44. Sardarian AR, Dindarloo Inaloo I, Modarresi-Alam AR, Kleinpeter E, Schilde U (2019) Metal-free regioselective monocyanation of hydroxy-, alkoxy-, and benzyloxyarenes by potassium thiocyanate and silica sulfuric acid as a cyanating agent. J Org Chem 84:1748–1756

    Article  CAS  PubMed  Google Scholar 

  45. Al-Mulla A (2017) A review: biological importance of heterocyclic compounds. Der Pharma Chem 9:141–147

    CAS  Google Scholar 

  46. Feng M, Tang B, Liang H, Jiang S X (2016) Sulfur containing scaffolds in drugs: synthesis and application in medicinal chemistry. Curr Top Med Chem 16:1200–1216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shi F, Li C, **a M, Miao K, Zhao Y, Tu S, Ma N (2009) Green chemoselective synthesis of thiazolo[3,2-a]pyridine derivatives and evaluation of their antioxidant and cytotoxic activities. Bioorg Med Chem Lett 19:5565–5568

    Article  CAS  PubMed  Google Scholar 

  48. Bayat M, Safari F, Nasri S, Hosseini FS (2019) A chemoselective synthesis and biological evaluation of novel benzo[g]thiazolo[3,2-a]quinolone derivatives. Monatsh Chem 150:703–710

    Article  CAS  Google Scholar 

  49. Rouzban H, Bayat M, Hosseini H (2022) Efficient regioselective five-component synthesis of novel thiazolo[3,2-a]pyridine carbohydrazides and oxazolo[3,2-a]pyridine carbohydrazides. Mol Divers https://doi.org/10.1007/s11030-022-10446-0

    Article  PubMed  Google Scholar 

  50. Razavi ZS, Bayat M, Hosseini H (2020) Synthesis of highly functionalized thiazolo[3,2-a]pyridine derivatives via a five-component cascade reaction based on nitroketene N,S-acetal. RSC adv 10:31039–31048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Boominathan M, Nagaraj M, Maheshwaran C, Muthusubramanian S, Bhuvanesh N (2014) One-pot green synthesis of thiazolo[3,2‐a]pyridine derivatives via tandem cyclization in aqueous media. J Heterocycl Chem 51:244–248

    Article  CAS  Google Scholar 

  52. Dotsenko VV, Bushmarinov IS, Goloveshkin AS, Chigorina EA, Frolov KA, Krivokolysko SG (2017) Synthesis of thiazolo[3,2-a]pyridines via an unusual Mannich-type cyclization. Phosphorus Sulfur Silicon Relat Elem. https://doi.org/10.1080/10426507.2016.1224877

    Article  Google Scholar 

  53. Nasri S, Hosseini FS, Bayat M (2018) Solvent-controlled dehydration and diastereoselective formation of indenone-fused thiazolo[3,2-a]pyridines via a one-pot four-component reaction. Tetrahedron 74:4409–4417

    Article  CAS  Google Scholar 

  54. Khan S, Rahman H, Khan MM (2019) Nitroketene N,S-acetals: synergistic building blocks for the synthesis of heterocycles. RSC adv 9:14477–14502

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Financial support of this research from Imam Khomeini International University, Iran is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

FF: performed the experiments. MB and AM: conceived and designed the experiments; analyzed and interpreted the data; contributed reagents, materials, analysis tools or data. SN and MK: conceived and designed the experiments; analyzed and interpreted the data; wrote the paper.

Corresponding author

Correspondence to Mohammad Bayat.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 11766.0 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fazelinia, F., Bayat, M., Nasri, S. et al. Chitosan@Tannic Acid-Supported Fe3O4 Magnetic Bionanocomposite as Green and Recyclable Catalyst for the Synthesis of Benzo[g]thiazolo[3,2-a]quinolones Based on Nitroketene N,S-Acetal. Catal Surv Asia 27, 391–405 (2023). https://doi.org/10.1007/s10563-023-09406-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-023-09406-x

Keywords

Navigation