Log in

Fabrication of Metallo-Pharmaceutical Composite Hydrogel Composed of Curcumin-Loaded CMC-Na/Sodium Alginate/PdCl2: Optimization, Antimicrobial Activity, and Cancer Cell Mortality In Vitro Assessment

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This work explores the fabrication route of curcumin-loaded carboxymethyl cellulose sodium/sodium alginate/palladium chloride (CMC-Na/SA/PdCl2) composite hydrogel as localized delivery system for cancer treatment. Herein, an approach was established for improving encapsulation capacity and exploiting therapeutic efficiency. CMC-Na/SA/PdCl2 composite hydrogels were prepared by gelation method using ionic crosslinker (PdCl2). Results proved that the optimized formula (CMC-Na:SA (4:1)/PdCl2 0.4%) recorded a gel fraction of 91% with a swelling ratio ~ 3000% after 96 h, while XRD analysis exhibited no remarks of sharp peaks which confirmed an amorphous phase of tested hydrogel. TGA results showed that this recipe is thermostable compared to other tested formulae. Moreover, SEM of crosslinked unloaded and curcumin-loaded hydrogel showed interconnected pores indicating the interior crosslinked chains formed. According to FT-IR analysis, curcumin was incorporated successfully into CMC-Na/SA via intermolecular hydrogen bonding between curcumin and hydrogel components. In vitro cytotoxicity of CMC-Na/SA/PdCl2 hydrogel exhibited an inhibition proliferation for breast cancer cells (MDA-MB231), liver cancer cells (HePG-2), and colon cancer cells (CaCo-2) without any toxic effect on the normal cells. Additionally, curcumin-loaded CMC-Na/SA/PdCl2 composite hydrogels exhibited only 50% inhibition proliferation for HePG-2 with 0.6% curcumin. Also, curcumin-free crosslinked CMC-Na/SA (4:1) hydrogels exhibited 80% inhibition proliferation for HePG-2 cells. According to antimicrobial bioassay data, CMC-Na:SA (4:1)/PdCl2 0.4%/0.6% Cr hydrogel has the maximum biofilm inhibition as was recorded against Staphylococcus aureus (77%), followed by Bacillus cereus (74%) and Candida krusei (66%). Thus, CMC-Na/SA/PdCl2 composite hydrogels could be regarded as promising antibacterial and anticancer biomaterials for multipurpose biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

All data are available.

References

  1. Kesharwani, P.; Bisht, A.; Alexander, A.; Dave, V.; Sharma, S.: Biomedical applications of hydrogels in drug delivery system: An update. J Drug Deliv Sci Technol 66(June), 102914 (2021). https://doi.org/10.1016/j.jddst.2021.102914

    Article  Google Scholar 

  2. Song, Y.; Xu, L.; Xu, L.; Deng, L.: Radiation cross-linked gelatin/sodium alginate/carboxymethylcellulose sodium hydrogel for the application as debridement glue paste. Polym Bull. 79(2), 725–742 (2022). https://doi.org/10.1007/s00289-020-03525-5

    Article  Google Scholar 

  3. Janarthanan, G.; Noh, I.: Recent trends in metal ion based hydrogel biomaterials for tissue engineering and other biomedical applications. J. Mater. Sci. Technol. 10(63), 35–53 (2021)

    Article  Google Scholar 

  4. Pellá, M.C.G.; Lima-Tenório, M.K.; Tenório-Neto, E.T.; Guilherme, M.R.; Muniz, E.C.; Rubira, A.F.: Chitosan-based hydrogels: from preparation to biomedical applications. Carbohydr Polym. 196(March), 233–245 (2018). https://doi.org/10.1016/j.carbpol.2018.05.033

    Article  Google Scholar 

  5. Hu, W.; Wang, Z.; **ao, Y.; Zhang, S.; Wang, J.: Advances in crosslinking strategies of biomedical hydrogels. Biomater. Sci. 7(3), 843–855 (2019)

    Article  Google Scholar 

  6. Tang, P.; Wu, J.; Guo, Z.; Liu, W.: MIL-88A-based antifouling superhydrophilic membrane for efficient emulsion separation and dye degradation via photo-fenton process. Surf. Interf. 1(43), 103572 (2023)

    Article  Google Scholar 

  7. Walbrück, K.; Kuellmer, F.; Witzleben, S.; Guenther, K.: Synthesis and characterization of PVP-stabilized palladium nanoparticles by XRD, SAXS, SP-ICP-MS, and SEM. J. Nanomater. 2019, 1–7 (2019)

    Article  Google Scholar 

  8. Lazarević, T.; Rilak, A.; Bugarčić, ŽD.: Platinum, palladium, gold and ruthenium complexes as anticancer agents: current clinical uses, cytotoxicity studies and future perspectives. Eur. J. Med. Chem. 142, 8–31 (2017)

    Article  Google Scholar 

  9. Phan, T.T.V.; Huynh, T.C.; Manivasagan, P.; Mondal, S.; Oh, J.: An up-to-date review on biomedical applications of palladium nanoparticles. Nanomaterials 10(1), 66 (2020)

    Article  Google Scholar 

  10. Baghayeri, M.; Alinezhad, H.; Tarahomi, M.; Fayazi, M.; Ghanei-Motlagh, M.; Maleki, B.: A non-enzymatic hydrogen peroxide sensor based on dendrimer functionalized magnetic graphene oxide decorated with palladium nanoparticles. Appl. Surf. Sci. 1(478), 87–93 (2019)

    Article  Google Scholar 

  11. Baghayeri, M.; Veisi, H.; Veisi, H.; Maleki, B.; Karimi-Maleh, H.; Beitollahi, H.: Multi-walled carbon nanotubes decorated with palladium nanoparticles as a novel platform for electrocatalytic sensing applications. RSC Adv. 4(91), 49595–49604 (2014)

    Article  Google Scholar 

  12. Ray, S.; Mohan, R.; Singh, J.K.; Samantaray, M.K.; Shaikh, M.M.; Panda, D., et al.: Anticancer and antimicrobial metallopharmaceutical agents based on palladium, gold, and silver N-heterocyclic carbene complexes. J. Am. Chem. Soc. 129(48), 15042–15053 (2007)

    Article  Google Scholar 

  13. Wang, Y.; Zheng, Y.; He, W.; Wang, C.; Sun, Y.; Qiao, K.; Wang, X.; Gao, L.: Preparation of a novel sodium alginate/polyvinyl formal composite with a double crosslinking interpenetrating network for multifunctional biomedical application. Compos. B Eng. 15(121), 9–22 (2017)

    Article  Google Scholar 

  14. He, X.; Zeng, L.; Cheng, X.; Yang, C.; Chen, J.; Chen, H.; Ni, H.; Bai, Y.; Yu, W.; Zhao, K.; Hu, P.: Shape memory composite hydrogel based on sodium alginate dual crosslinked network with carboxymethyl cellulose. Eur. Polymer J. 5(156), 110592 (2021)

    Article  Google Scholar 

  15. Ning, L.; Jia, Y.; Zhao, X.; Tang, R.; Wang, F.; You, C.: Nanocellulose-based drug carriers: functional design, controllable synthesis, and therapeutic applications. Int. J. Biol. Macromol. 1(222), 1500–1510 (2022)

    Article  Google Scholar 

  16. Capanema, N.S.; Mansur, A.A.; Carvalho, I.C.; Carvalho, S.M.; Mansur, H.S.: Bioengineered water-responsive carboxymethyl cellulose/poly (vinyl alcohol) hydrogel hybrids for wound dressing and skin tissue engineering applications. Gels. 9(2), 166 (2023)

    Article  Google Scholar 

  17. Wang, Y.; **ao, D.; Tang, Y.; **a, Y.; Zhong, Y.; Zhang, L.; Sui, X.; Wang, B.; Feng, X.; Xu, H.; Mao, Z.: Carboxymethyl cellulose-based injectable hydrogel loaded with a composite of melatonin and γ-cyclodextrin with antioxidant property for diabetic wound repair. Cellulose 30(3), 1791–1810 (2023)

    Article  Google Scholar 

  18. Zennifer, A.; Senthilvelan, P.; Sethuraman, S.; Sundaramurthi, D.: Key advances of carboxymethyl cellulose in tissue engineering & 3D bioprinting applications. Carbohydr. Polym. 256, 117561 (2021)

    Article  Google Scholar 

  19. Dahlan, N.A.; Teow, S.Y.; Lim, Y.Y.; Pushpamalar, J.: Modulating carboxymethylcellulose-based hydrogels with superior mechanical and rheological properties for future biomedical applications. Express Polym Lett 15(7), 612–625 (2021)

    Article  Google Scholar 

  20. Koneru, A.; Dharmalingam, K.; Anandalakshmi, R.: Cellulose based nanocomposite hydrogel films consisting of sodium carboxymethylcellulose–grapefruit seed extract nanoparticles for potential wound healing applications. Int. J. Biol. Macromol. 148, 833–842 (2020)

    Article  Google Scholar 

  21. Hu, Y.; Hu, S.; Zhang, S.; Dong, S.; Hu, J.; Kang, L., et al.: A double-layer hydrogel based on alginate-carboxymethyl cellulose and synthetic polymer as sustained drug delivery system. Sci. Rep. 11(1), 1–14 (2021). https://doi.org/10.1038/s41598-021-88503-1

    Article  Google Scholar 

  22. Ren, H.; Gao, Z.; Wu, D.; Jiang, J.; Sun, Y.; Luo, C.: Efficient Pb(II) removal using sodium alginate-carboxymethyl cellulose gel beads: preparation, characterization, and adsorption mechanism. Carbohydr. Polym. 137, 402–409 (2016)

    Article  Google Scholar 

  23. Zhang, K.; Wang, Y.; Wei, Q.; Li, X.; Guo, Y.; Zhang, S.: Design and fabrication of sodium alginate/carboxymethyl cellulose sodium blend hydrogel for artificial skin. Gels 7(3), 115 (2021)

    Article  Google Scholar 

  24. Lu, K.H.; Lu, P.W.A.; Lu, E.W.H.; Lin, C.W.; Yang, S.F.: Curcumin and its analogs and carriers: potential therapeutic strategies for human osteosarcoma. Int. J. Biol. Sci. 19(4), 1241–1265 (2023)

    Article  Google Scholar 

  25. Wang, Y.; Xu, S.; Han, C.; Wang, L.; Zheng, Q.; Wang, S., et al.: Curcumin inhibits Singapore grouper iridovirus infection through multiple antiviral mechanisms. Aquaculture. 562(September), 738870 (2022). https://doi.org/10.1016/j.aquaculture.2022.738870

    Article  Google Scholar 

  26. Hajifathali, S.; Lesan, S.; Lotfali, E.; Salimi-Sabour, E.; Khatibi, M.: Investigation of the antifungal effects of curcumin against nystatin-resistant Candida albicans. Dental Res. J. 20(1), 50 (2023)

    Article  Google Scholar 

  27. Wang, M.; Yi, N.; Fang, K.; Zhao, Z.; **e, R.; Chen, W.: Deep colorful antibacterial wool fabrics by high-efficiency pad dyeing with insoluble curcumin. Chem. Eng. J. 452, 139121 (2022)

    Article  Google Scholar 

  28. Ilyas, U.; Katare, D.P.; Aeri, V.; Naseef, P.P.: A review on hepatoprotective and immunomodulatory herbal plants. Pharmacogn. Rev. 10(19), 66–70 (2016)

    Article  Google Scholar 

  29. Chopra, H.; Mohanta, Y.K.; Rauta, P.R.; Ahmed, R.; Mahanta, S.; Mishra, P.K.; Panda, P.; Rabaan, A.A.; Alshehri, A.A.; Othman, B.; Alshahrani, M.A.: An insight into advances in develo** nanotechnology based therapeutics, drug delivery, diagnostics and vaccines: multidimensional applications in tuberculosis disease management. Pharmaceuticals 16(4), 581 (2023)

    Article  Google Scholar 

  30. Abadi, A.J.; Mirzaei, S.; Mahabady, M.K.; Hashemi, F.; Zabolian, A.; Hashemi, F., et al.: Curcumin and its derivatives in cancer therapy: potentiating antitumor activity of cisplatin and reducing side effects. Phyther Res. 36(1), 189–213 (2022)

    Article  Google Scholar 

  31. Hussein, Y.; Loutfy, S.A.; Kamoun, E.A.; EL-Moslamy, S.H.; Radwan, E.M.; Elbehairi, S.E.I.: Enhanced anti-cancer activity by localized delivery of curcumin form PVA/CNCs hydrogel membranes: preparation and in vitro bioevaluation. Int. J. Biol. Macromol. 170, 107–122 (2021)

    Article  Google Scholar 

  32. Agarwal, T.; Narayana, S.N.G.H.; Pal, K.; Pramanik, K.; Giri, S.; Banerjee, I.: Calcium alginate-carboxymethyl cellulose beads for colon-targeted drug delivery. Int. J. Biol. Macromol. 75, 409–417 (2015)

    Article  Google Scholar 

  33. Tang, X.; Wang, X.; Sun, Y.; Zhao, L.; Li, D.; Zhang, J., et al.: Magnesium oxide-assisted dual-cross-linking bio-multifunctional hydrogels for wound repair during full-thickness skin injuries. Adv. Funct. Mater. 31(43), 1–11 (2021)

    Article  Google Scholar 

  34. Ibrahim, S.M.; El Salmawi, K.M.: Preparation and properties of carboxymethyl cellulose (CMC)/sodium alginate (SA) blends induced by gamma irradiation. J. Polym. Environ. 21(2), 520–527 (2013)

    Article  Google Scholar 

  35. Benamer, S.; Mahlous, M.; Boukrif, A.; Mansouri, B.; Youcef, S.L.: Synthesis and characterisation of hydrogels based on poly(vinyl pyrrolidone). Nucl. Instr. Meth. Phys. Res. Sect. B Beam Interact Mater. Atoms. 248(2), 284–290 (2006)

    Article  Google Scholar 

  36. Gradilla-Orozco, J.L.; Hernández-Jiménez, J.Á.; Robles-Vásquez, O.; Cortes-Ortega, J.A.; Renteria-Urquiza, M.; Lomelí-Ramírez, M.G., et al.: Physicomechanical and morphological characterization of multi-structured potassium-acrylate-based hydrogels. Gels 8(10), 1–14 (2022)

    Article  Google Scholar 

  37. Salim, S.A.; Badawi, N.M.; EL-Moslamy, S.H.; Kamoun, E.A.; Daihom, B.A.: Novel long-acting brimonidine tartrate loaded-PCL/PVP nanofibers for versatile biomedical applications: fabrication, characterization and antimicrobial evaluation. RSC Adv. 13(22), 14943–14957 (2023)

    Article  Google Scholar 

  38. Chauhan, S.; Bansal, M.; Khan, G.; Yadav, S.K.; Singh, A.K.; Prakash, P., et al.: Development, optimization and evaluation of curcumin loaded biodegradable crosslinked gelatin film for the effective treatment of periodontitis. Drug development and industrial pharmacy, Vol. 44, p. 1212–1221. Taylor and Francis, Routledge (2018)

    Google Scholar 

  39. Hayat, S.; Ashraf, A.; Zubair, M.; Aslam, B.; Siddique, M.H.; Khurshid, M., et al.: Biofabrication of ZnO nanoparticles using Acacia arabica leaf extract and their antibiofilm and antioxidant potential against foodborne pathogens. PLoS One. 17(1 January), 1–18 (2022)

    Google Scholar 

  40. Balows, A.: Manual of clinical microbiology 8th edition: P. R. Murray, E. J. Baron, J. H. Jorgenson, M. A. Pfaller, and R. H. Yolken, eds., ASM Press, 2003, 2113 pages, 2 vol, 2003 + subject & author indices, ISBN: 1–555810255–4, US$ 189.95. Diagn Microbiol Infect Dis. 47(4), 625 (2003)

    Article  Google Scholar 

  41. Feizi, H.; Agheli, N.; Sahabi, H.: Titanium dioxide nanoparticles alleviate cadmium toxicity in lentil (Lens culinaris Medic) seeds. Acta Agric Slov. 116(1), 59–68 (2020)

    Article  Google Scholar 

  42. Hawkins, A.N.; Licea, S.J.; Sleeper, S.A.; Swearingen, M.C.: Calcium sulfate beads made with antibacterial essential oil-water emulsions exhibit growth inhibition against Staphylococcus aureus in agar pour plates. PLoS One 17(7 July), 4–13 (2022)

    Google Scholar 

  43. Cruz, C.D.; Shah, S.; Tammela, P.: Defining conditions for biofilm inhibition and eradication assays for Gram-positive clinical reference strains. BMC Microbiol 18(1), 1–9 (2018)

    Article  Google Scholar 

  44. Dai, H.; Ou, S.; Huang, Y.; Liu, Z.; Huang, H.: Enhanced swelling and multiple-responsive properties of gelatin/sodium alginate hydrogels by the addition of carboxymethyl cellulose isolated from pineapple peel. Cellulose 25(1), 593–606 (2018)

    Article  Google Scholar 

  45. Ibrahim, S.M.; Abou El Fadl, F.I.; EL-Naggar, A.A.: Preparation and characterization of crosslinked alginate-CMC beads for controlled release of nitrate salt. J. Radioanal. Nucl. Chem. 299(3), 1531–1537 (2014)

    Article  Google Scholar 

  46. Hussein, Y.; Loutfy, S.A.; Kamoun, E.A.; EL-Moslamy, S.H.; Radwan, E.M.; Elbehairi, S.E.I.: Enhanced anti-cancer activity by localized delivery of curcumin form PVA/CNCs hydrogel membranes: preparation and in vitro bioevaluation. Int. J. Biol. Macromol. 170(December), 107–122 (2021)

    Article  Google Scholar 

  47. Rajasekharreddy, P.; Rani, P.U.: Biosynthesis and Characterization of Pd and Pt Nanoparticles Using Piper betle L Plant in a Photoreduction Method. J Clust Sci. 25(5), 1377–1388 (2014)

    Article  Google Scholar 

  48. Tuan Mohamood, N.F.A.Z.; Abdul Halim, A.H.; Zainuddin, N.: Carboxymethyl cellulose hydrogel from biomass waste of oil palm empty fruit bunch using calcium chloride as crosslinking agent. Polymers (Basel). 13(23), 4056 (2021)

    Article  Google Scholar 

  49. Badita, C.R.; Aranghel, D.; Burducea, C.; Mereuta, P.: Characterization of sodium alginate based films. Rom. J. Phys. 65(1–2), 1–8 (2020)

    Google Scholar 

  50. Abd El-Hady, M.M.; El-Sayed Saeed, S.: Antibacterial properties and pH sensitive swelling of insitu formed silver-curcumin nanocomposite based chitosan hydrogel. Polymers. 12, 1–14 (2020)

    Article  Google Scholar 

  51. Yang, Y.; Yu, X.; Zhu, Y.; Zeng, Y.; Fang, C.; Liu, Y.: Preparation and application of a colorimetric film based on sodium alginate/sodium carboxymethyl cellulose incorporated with rose anthocyanins. Food Chem. 393(May), 133342 (2022)

    Article  Google Scholar 

  52. El-Bana, A.A.; Barakat, N.M.; Abdelghany, A.M.; Meikhail, M.S.: Effect of surfactants addition on physical, structure and antimicrobial activity of (Na-CMC/Na–Alg) biofilms. Polym. Bull. 80(3), 2883–2909 (2022)

    Article  Google Scholar 

  53. Bajpai, S.K.; Chand, N.; Ahuja, S.: Investigation of curcumin release from chitosan/cellulose micro crystals (CMC) antimicrobial films. Int. J. Biol. Macromol. 79, 440–448 (2015)

    Article  Google Scholar 

  54. Patel, N.; Lalwani, D.; Gollmer, S.; Injeti, E.; Sari, Y.; Nesamony, J.: Development and evaluation of a calcium alginate based oral ceftriaxone sodium formulation. Prog. Biomater. 5(2), 117–133 (2016)

    Article  Google Scholar 

  55. Kang, H.; Gao, J.; **e, M.; Sun, Y.; Wu, F.; Gao, C., et al.: Carboxymethyl cellulose gel membrane loaded with nanoparticle photocatalysts for hydrogen production. Int. J. Hydr. Energy 44(26), 13011–13021 (2019)

    Article  Google Scholar 

  56. Czarnomysy, R.; Radomska, D.; Szewczyk, O.K.; Roszczenko, P.; Bielawski, K.: Platinum and palladium complexes as promising sources for antitumor treatments. Int. J. Mol. Sci. 22(15), 8271 (2021)

    Article  Google Scholar 

  57. Ashraf, H.; Salim, S.A.; EL-Moslamy, S.H.; Loutfy, S.A.; Kamoun, E.A.: An Injectable in situ forming collagen/alginate/CaSO4 composite hydrogel for tissue engineering applications: optimization characterization and in vitro assessments. Arab. J. Sci. Eng. (2024). https://doi.org/10.1007/s13369-024-08922-w

    Article  Google Scholar 

  58. Rodrigues, M.A.; Fernandes, J.N.; Ruggiero, R.; Guerra, W.: Palladium complex containing curcumin as ligand: thermal and spectral characterization. Am. J. Chem. 2(3), 157–159 (2012)

    Article  Google Scholar 

  59. Zianna, A.; Geromichalos, G.; Fiotaki, A.M.; Hatzidimitriou, A.G.; Kalogiannis, S.; Psomas, G.: Palladium(II) complexes of substituted salicylaldehydes: synthesis, characterization and investigation of their biological profile. Pharmaceuticals 15(7), 886 (2022)

    Article  Google Scholar 

  60. Saravanan, A.; Kumar, P.S.; Karishma, S.; Vo, D.V.N.; Jeevanantham, S.; Yaashikaa, P.R., et al.: A review on biosynthesis of metal nanoparticles and its environmental applications. Chemosphere 264, 128580 (2021)

    Article  Google Scholar 

  61. Alloosh, M.T.; Khaddam, W.I.; Almuhammady, A.K.: Biosynthesis of metal nanoparticles using microorganisms and its medicinal applications. Nov. Res. Microbiol. J. 5(1), 1077–1090 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This study is supported via funding from Prince Sattam bin Abdulaziz University Project No. (PSAU/2023/R/1445).

Funding

No funding was received for conducting this work.

Author information

Authors and Affiliations

Authors

Contributions

Mariam Imam contributed to experimental work and wrote the original manuscript; Samar Salim performed supervision, wrote the original, and revised the manuscript; Shahira El-Moslamy conducted the microbiology part; Nehal El-Deeb conducted the cell culture experiments; A.K. El-Sawaf and A.A. Nassar contributed to materials and part funding for characterization; and Elbadawy Kamoun performed supervision, wrote the original, and revised the final manuscript.

Corresponding authors

Correspondence to Elbadawy A. Kamoun or Samar A. Salim.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Ethical Approval

No animal model, human trials nor in vivo experiments were carried out in this research, while all research studies followed the Helsinki World Medical Association's Declaration: Ethical Medical Research Principles Involving Human Subjects.

Consent for Publications

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamoun, E.A., Imam, M.M., EL-Moslamy, S.H. et al. Fabrication of Metallo-Pharmaceutical Composite Hydrogel Composed of Curcumin-Loaded CMC-Na/Sodium Alginate/PdCl2: Optimization, Antimicrobial Activity, and Cancer Cell Mortality In Vitro Assessment. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-09233-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-09233-w

Keywords

Navigation