Log in

Unraveling the Effect of Acid Treatment Prior to Alkaline Treatment on the Performance of TS-1 Zeolite

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The effect of acid treatment on TS-1 zeolite prior to alkaline treatment with TPAOH solution is investigated. 1H MAS NMR, UV–Vis, XPS, XRF, N2-sorption and TEM are applied to characterize the acid and/or alkaline treated TS-1 samples. It is found that acid treatment destructs the Si–O-Ti bonds of the framework, and promotes the conversion of 4-coordinated Ti into 6-coordinated Ti. Then in the subsequent alkaline treatment, part of framework Si–O-Si bonds are hydrolyzed and mesopores are formed. Meanwhile, the dissolved Si and Ti species could be incorporated back into the framework directed by TPAOH. Compared with TS-1-A, which is synthesized without acid treatment, TS-1-HA remains more active center and enhanced accessibility. Therefore, it shows high catalytic performance in cyclohexanone ammoximation reaction.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lewis RJ, Ueura K, Fukuta Y, Davies TE, Morgan DJ, Paris CB, Singleton J, Edwards JK, Freakley SJ, Yamamoto Y, Hutchings GJ (2022) Cyclohexanone ammoximation via in situ H2O2 production using TS-1 supported catalysts. Green Chem 24(24):9496–9507. https://doi.org/10.1039/d2gc02689a

    Article  CAS  Google Scholar 

  2. Huang D-G, Zhang X, Chen B-H, Chao Z-S (2010) Ethanol-assistant synthesis of TS-1 containing no extra-framework Ti species. Catal Today 158(3–4):510–514. https://doi.org/10.1016/j.cattod.2010.07.027

    Article  CAS  Google Scholar 

  3. Wang J-y, Cui W, Liao Y, Zhang G, Hu Y (2009) Catalytic oxidation of cyclohexane by TS-1 in [emim]BF4 ionic liquid. Huaxue Fanying Gongcheng Yu Gongyi 25(3):285–288

    Google Scholar 

  4. Zhang F, Shang H, ** D, Chen R, **ng W (2017) High efficient synthesis of methyl ethyl ketone oxime from ammoximation of methyl ethyl ketone over TS-1 in a ceramic membrane reactor. Chem Eng Process 116:1–8. https://doi.org/10.1016/j.cep.2017.03.014

    Article  CAS  Google Scholar 

  5. Wu M, Liu X, Wang Y, Guo Y, Guo Y, Lu G (2014) Synthesis and catalytic ammoxidation performance of hierarchical TS-1 prepared by steam-assisted dry gel conversion method: the effect of TPAOH amount. J Mater Sci 49(12):4341–4348. https://doi.org/10.1007/s10853-014-8130-6

    Article  CAS  Google Scholar 

  6. Zhuo Z, Wang L, Zhang X, Wu L, Liu Y, He M (2015) Insights into the key to highly selective synthesis of oxime via ammoximation over titanosilicates. J Catal 329:107–118. https://doi.org/10.1016/j.jcat.2015.04.030

    Article  CAS  Google Scholar 

  7. Alvear M, Eranen K, Murzin DY, Salmi T (2021) Study of the Product Distribution in the Epoxidation of Propylene over TS-1 Catalyst in a Trickle-Bed Reactor. Ind Eng Chem Res 60(6):2430–2438. https://doi.org/10.1021/acs.iecr.0c06150

    Article  CAS  Google Scholar 

  8. Serrano DP, Sanz R, Pizarro P, Moreno I, de Frutos P, Blazquez S (2009) Preparation of extruded catalysts based on TS-1 zeolite for their application in propylene epoxidation. Catal Today 143(1–2):151–157. https://doi.org/10.1016/j.cattod.2008.09.039

    Article  CAS  Google Scholar 

  9. Wu G, Wang Y, Wang L, Feng W, Shi H, Lin Y, Zhang T, ** X, Wang S, Wu X, Yao P (2013) Epoxidation of propylene with H2O2 catalyzed by supported TS-1 catalyst in a fixed-bed reactor: Experiments and kinetics. Chem Eng J (Amsterdam Neth) 215–216:306–314. https://doi.org/10.1016/j.cej.2012.11.055

    Article  CAS  Google Scholar 

  10. Zhu Q, Liang M, Yan W, Ma W (2019) Effective hierarchization of TS-1 and its catalytic performance in propene epoxidation. Microporous Mesoporous Mater 278:307–313. https://doi.org/10.1016/j.micromeso.2018.12.004

    Article  CAS  Google Scholar 

  11. Liu H, Lu G, Guo Y, Guo Y, Wang J (2006) Chemical kinetics of hydroxylation of phenol catalyzed by TS-1/diatomite in fixed-bed reactor. Chem Eng J (Amsterdam Neth) 116(3):179–186. https://doi.org/10.1016/j.cej.2005.12.001

    Article  CAS  Google Scholar 

  12. Thangaraj A, Kumar R, Ratnasamy P (1991) Catalytic properties of crystalline titanium silicalites. II. Hydroxylation of phenol with hydrogen peroxide over TS-1 zeolites. J Catal 131(1):294. https://doi.org/10.1016/0021-9517(91)90347-7

    Article  CAS  Google Scholar 

  13. Corma A (2003) State of the art and future challenges of zeolites as catalysts. J Catal 216(1–2):298–312. https://doi.org/10.1016/s0021-9517(02)00132-x

    Article  CAS  Google Scholar 

  14. Huybrechts DRC, De Bruycker L, Jacobs PA (1990) Oxyfunctionalization of alkanes with hydrogen peroxide on titanium silicalite. Nature (Lond) 345(6272):240. https://doi.org/10.1038/345240a0

    Article  CAS  Google Scholar 

  15. Tatsumi T, Nakamura M, Negishi S, Tominaga H (1990) Shape-selective oxidation of alkanes with H2O2 catalysed by titanosilicate. J Chem Soc Chem Commun 6:476–477. https://doi.org/10.1039/C39900000476

    Article  Google Scholar 

  16. Serrano DP, Sanz R, Pizarro P, Moreno I, Medina S (2014) Hierarchical TS-1 zeolite as an efficient catalyst for oxidative desulphurization of hydrocarbon fractions. Appl Catal B 146:35–42. https://doi.org/10.1016/j.apcatb.2013.05.025

    Article  CAS  Google Scholar 

  17. Cheneviere Y, Chieux F, Caps V, Tuel A (2010) Synthesis and catalytic properties of TS-1 with mesoporous/microporous hierarchical structures obtained in the presence of amphiphilic organosilanes. J Catal 269(1):161–168. https://doi.org/10.1016/j.jcat.2009.11.003

    Article  CAS  Google Scholar 

  18. Wang B, Lin M, Peng X, Zhu B, Shu X (2016) Hierarchical TS-1 synthesized effectively by post-modification with TPAOH and ammonium hydroxide. RSC Adv 6(51):44963–44971. https://doi.org/10.1039/c6ra06657g

    Article  CAS  Google Scholar 

  19. Yu S, Sun M-H, Wang Y-Y, Liu Z, Lyu J-M, Wang Y-L, Hu Z-Y, Li Y, Chen L-H, Su B-L (2023) Hierarchical Titanium Silicalite-1 Zeolites Featuring an Ordered Macro-Meso-Microporosity for Efficient Epoxidations. Cryst Growth Des 23(4):2818–2825. https://doi.org/10.1021/acs.cgd.3c00014

    Article  CAS  Google Scholar 

  20. Wang B, Lu L, Ge B, Chen S, Zhu J, Wei D (2019) Hydrophobic and hierarchical modification of TS-1 and application for propylene epoxidation. J Porous Mater 26(1):227–237. https://doi.org/10.1007/s10934-018-0647-7

    Article  CAS  Google Scholar 

  21. Pang T, Yang X, Yuan C, Elzatahry AA, Alghamdi A, He X, Cheng X, Deng Y (2021) Recent advance in synthesis and application of heteroatom zeolites. Chin Chem Lett 32(1):328–338. https://doi.org/10.1016/j.cclet.2020.04.018

    Article  CAS  Google Scholar 

  22. Wang W, Li G, Liu L, Chen Y (2013) Synthesis and catalytic performance of hierarchical TS-1 directly using agricultural products sucrose as meso/macropores template. Microporous Mesoporous Mater 179:165–171. https://doi.org/10.1016/j.micromeso.2013.06.012

    Article  CAS  Google Scholar 

  23. Chen L-H, Li X-Y, Tian G, Li Y, Rooke JC, Zhu G-S, Qiu S-L, Yang X-Y, Su B-L (2011) Highly Stable and Reusable Multimodal Zeolite TS-1 Based Catalysts with Hierarchically Interconnected Three-Level Micro-Meso-Macroporous Structure. Angew Chem Int Ed 50(47):11156. https://doi.org/10.1002/anie.201105678

    Article  CAS  Google Scholar 

  24. Peng H, Xu L, Zhang L, Zhang K, Liu Y, Wu H, Wu P (2012) Synthesis of core-shell structured TS-1@mesocarbon materials and their applications as a tandem catalyst. J Mater Chem 22(28):14219–14227. https://doi.org/10.1039/c2jm31788e

    Article  CAS  Google Scholar 

  25. Wei Y, Li G, Lu Q, Cheng C, Guo H (2018) Green and efficient epoxidation of methyl oleate over hierarchical TS-1. Chin J Catal 39(5):964–972. https://doi.org/10.1016/s1872-2067(18)63014-1

    Article  CAS  Google Scholar 

  26. Yang G, Han J, Liu Y, Qiu Z, Chen X (2020) The synthetic strategies of hierarchical TS-1 zeolites for the oxidative desulfurization reactions. Chin J Chem Eng 28(9):2227–2234. https://doi.org/10.1016/j.cjche.2020.06.026

    Article  CAS  Google Scholar 

  27. Zhang T, Chen X, Chen G, Chen M, Bai R, Jia M, Yu J (2018) Synthesis of anatase-free nano-sized hierarchical TS-1 zeolites and their excellent catalytic performance in alkene epoxidation. J Mater Chem A 6(20):9473–9479. https://doi.org/10.1039/c8ta01439f

    Article  CAS  Google Scholar 

  28. Serrano DP, Sanz R, Pizarro P, Moreno I (2012) Tailoring the properties of hierarchical TS-1 zeolite synthesized from silanized protozeolitic units. Appl Catal A 435–436:32–42. https://doi.org/10.1016/j.apcata.2012.05.033

    Article  CAS  Google Scholar 

  29. Wang Y, Lin M, Tuel A (2007) Hollow TS-1 crystals formed via a dissolution-recrystallization process. Microporous Mesoporous Mater 102(1–3):80–85. https://doi.org/10.1016/j.micromeso.2006.12.019

    Article  CAS  Google Scholar 

  30. Wang B, Peng X, Zhang W, Lin M, Zhu B, Liao W, Guo X, Shu X (2017) Hierarchical TS-1 synthesized via the dissolution-recrystallization process: Influence of ammonium salts. Catal Commun 101:26–30. https://doi.org/10.1016/j.catcom.2017.07.016

    Article  CAS  Google Scholar 

  31. Lin M, Shu X, Wang X (1999) Study on the synthesis and application of environmentally friendly catalyst TS-1 zeolite. Pet Process Petrochem 30(8):4

    Google Scholar 

  32. Fan W, Duan R-G, Yokoi T, Wu P, Kubota Y, Tatsumi T (2008) Synthesis, Crystallization Mechanism, and Catalytic Properties of Titanium-Rich TS-1 Free of Extraframework Titanium Species. J Am Chem Soc 130(31):10150–10164. https://doi.org/10.1021/ja7100399

    Article  CAS  PubMed  Google Scholar 

  33. Su Y, Li F, Zhou Z, Qin J, Wang X, Sun P, Wu W (2022) Acidic-treated TS-1 zeolites with high titanium for cyclohexanone efficient oximation. Mol Catal 533:112752. https://doi.org/10.1016/j.mcat.2022.112752

    Article  CAS  Google Scholar 

  34. Dubray F, Dib E, Medeiros-Costa I, Aquino C, Minoux D, van Daele S, Nesterenko N, Gilson J-P, Mintova S (2022) The challenge of silanol species characterization in zeolites. Inorg Chem Front 9(6):1125–1133. https://doi.org/10.1039/d1qi01483h

    Article  CAS  Google Scholar 

  35. Zhang P, Yi X, **a C, Peng X, Zhang S, Li C, Zheng A, Zhang X, Luo Y, Cui L, Yu F, Shu X (2023) Rational construction of multiple hollow silicalite-1 zeolite with enhanced quasi acidity for robust vapor-phase Beckmann rearrangement. Nano Res 16(5):7958–7966. https://doi.org/10.1007/s12274-022-5305-3

    Article  CAS  Google Scholar 

  36. Zhuang J, Yan Z, Liu X, Liu X, Han X, Bao X, Mueller U (2002) NMR Study on the Acidity of TS-1 Zeolite. Catal Lett 83(1–2):87–91

    Article  CAS  Google Scholar 

  37. Zhao P, Li Z, Zhang Y, Cui D, Guo Q, Dong Z, Qi G, Xu J, Deng F (2022) Tuning Lewis acid sites in TS-1 zeolites for hydroxylation of anisole with hydrogen peroxide. Microporous Mesoporous Mater 335:111840. https://doi.org/10.1016/j.micromeso.2022.111840

    Article  CAS  Google Scholar 

  38. **a C, Lin M, Zheng A, **ang Y, Zhu B, Xu G, Shu X (2016) Irreversible deactivation of hollow TS-1 zeolite caused by the formation of acidic amorphous TiO2-SiO2 nanoparticles in a commercial cyclohexanone ammoximation process. J Catal 338:340–348. https://doi.org/10.1016/j.jcat.2016.02.032

    Article  CAS  Google Scholar 

  39. Guo Q, Feng Z, Li G, Fan F, Li C (2013) Finding the “Missing Components” during the Synthesis of TS-1 Zeolite by UV Resonance Raman Spectroscopy. J Phys Chem C 117(6):2844–2848. https://doi.org/10.1021/jp310900a

    Article  CAS  Google Scholar 

  40. Li C, **ong G, **n Q, Liu J-K, Ying P-L, Feng Z-C, Li J, Yang W-B, Wang Y-Z, Wang G-R, Liu X-Y, Lin M, Wang X-Q, Min E-Z (1999) UV resonance Raman spectroscopic identification of titanium atoms in the framework of TS 1 zeolite. Angew Chem Int Ed 38(15):2220–2222. https://doi.org/10.1002/(sici)1521-3773(19990802)38:15%3c2220::aid-anie2220%3e3.0.co;2-g

    Article  CAS  Google Scholar 

  41. Ricchiardi G, Damin A, Bordiga S, Lamberti C, Spano G, Rivetti F, Zecchina A (2001) Vibrational structure of titanium silicate catalysts. A spectroscopic and theoretical study. J Am Chem Soc 123(46):11409–11419. https://doi.org/10.1021/ja010607v

    Article  CAS  PubMed  Google Scholar 

  42. Wang Y, Yang H, Zuo Y, Tian D, Hou G, Su Y, Feng Z, Guo X, Li C (2023) New penta- and hexa-coordinated titanium sites in titanium silicalite-1 catalyst for propylene epoxidation. Appl Catal B 325:122396. https://doi.org/10.1016/j.apcatb.2023.122396

    Article  CAS  Google Scholar 

  43. Wells DH Jr, Delgass WN, Thomson KT (2004) Evidence of Defect-Promoted Reactivity for Epoxidation of Propylene in Titanosilicate (TS-1) Catalysts: A DFT Study. J Am Chem Soc 126(9):2956–2962. https://doi.org/10.1021/ja037741v

    Article  CAS  PubMed  Google Scholar 

  44. Lin J, Yang T, Lin C, Sun J (2018) Hierarchical MFI zeolite synthesized via regulating the kinetic of dissolution-recrystallization and their catalytic properties. Catal Commun 115:82–86. https://doi.org/10.1016/j.catcom.2018.07.006

    Article  CAS  Google Scholar 

  45. Dai C, Zhang A, Li L, Hou K, Ding F, Li J, Mu D, Song C, Liu M, Guo X (2013) Synthesis of Hollow Nanocubes and Macroporous Monoliths of Silicalite-1 by Alkaline Treatment. Chem Mater 25(21):4197–4205. https://doi.org/10.1021/cm401739e

    Article  CAS  Google Scholar 

  46. Ma Q, Fu T, Li H, Cui L, Li Z (2020) Insight into the selection of the post-treatment strategy for zsm-5 zeolites for the improvement of catalytic stability in the conversion of methanol to hydrocarbons. Ind Eng Chem Res 59(24):11125–11138. https://doi.org/10.1021/acs.iecr.0c00084

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful for the financial support of SINOPEC Corporation (KL22031).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **nxin Peng or Yibin Luo.

Ethics declarations

Competing Interests

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 398 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Z., Zhao, Y., Yang, L. et al. Unraveling the Effect of Acid Treatment Prior to Alkaline Treatment on the Performance of TS-1 Zeolite. Catal Lett (2024). https://doi.org/10.1007/s10562-024-04680-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-024-04680-4

Keywords

Navigation