Log in

Rational construction of multiple hollow silicalite-1 zeolite with enhanced quasi acidity for robust vapor-phase Beckmann rearrangement

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Develo** efficient and stable zeolites for vapor-phase Beckmann rearrangement of cyclohexanone oxime is still a great challenge to realize ε-caprolactam (CPL) green production. In this work, the hierarchical porous silicalite-1 zeolites with multiple hollow structure (S-1-M) are explored by in-situ desilication—recrystallization post-treatment of spongy highway-like zeolites (S-1-S), which are synthesized through silanization synthesis of conventional bulky silicalite-1 (S-1). Compared to S-1, S-1-M achieves superior catalytic performance, with improving the CPL selectivity from 85.7% to 94.1% and prolonging the catalyst lifetime from 74 to 126 h at a weight hourly space velocity (WHSV) of 6 h−1. Comprehensive physiochemical studies demonstrate that the highly dispersed intracrystalline cavities within S-1-M endow greater mass diffusion and better quasi acidity inducing by the enhanced H-bonds among abundant H-bonded silanols, which is cooperatively responsible for its superior catalytic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kumar, R.; Shah, S.; Das, P. P.; Bhagavanbhai, G. G. K.; Fatesh, A. A.; Chowdhury, B. An overview of caprolactam synthesis. Catal. Rev. Sci. Eng. 2019, 61, 516–594.

    CAS  Google Scholar 

  2. Kumar, R.; Chowdhury, B. Comprehensive study for vapor phase beckmann rearrangement reaction over zeolite systems. Ind. Eng. Chem. Res. 2014, 53, 16587–16599.

    CAS  Google Scholar 

  3. Wang, Z. C.; Ling, H. J.; Shi, J.; Stampfl, C.; Yu, A. B.; Hunger, M.; Huang, J. Acidity enhanced [Al]MCM-41 via ultrasonic irradiation for the Beckmann rearrangement of cyclohexanone oxime to ε-caprolactam. J. Catal. 2018, 358, 71–79.

    CAS  Google Scholar 

  4. Bucko, T.; Hafner, J.; Benco, L. Active sites for the vapor phase beckmann rearrangement over mordenite: An ab initio study. J. Phys. Chem. A 2004, 108, 11388–11397.

    CAS  Google Scholar 

  5. Maronna, M. M.; Kruissink, E. C.; Parton, R. F.; Soulimani, F.; Weckhuysen, B. M.; Hoelderich, W. F. Spectroscopic study on the active site of a SiO2 supported niobia catalyst used for the gas-phase Beckmann rearrangement of cyclohexanone oxime to ε-caprolactam. Phys. Chem. Chem. Phys. 2016, 18, 22636–22646.

    CAS  Google Scholar 

  6. Sun, S. Q.; Liu, S. W.; Yu, F. L.; Zhang, J.; **ng, W. G.; Yu, S. T. High-yield and high-efficiency conversion of cyclohexanone oxime to ε-caprolactam in a green and facile reaction process over deep eutectic solvents. Chem. Eng. Sci. 2022, 253, 117519.

    CAS  Google Scholar 

  7. Heitmann, G. P.; Dahlhoff, G.; Niederer, J. P. M.; Hölderich, W. F. Active sites of a [B]-ZSM-5 zeolite catalyst for the beckmann rearrangement of cyclohexanone oxime to caprolactam. J. Catal. 2000, 194, 122–129.

    CAS  Google Scholar 

  8. Heitmann, G. P.; Dahlhoff, G.; Hölderich, W. F. Catalytically active sites for the beckmann rearrangement of cyclohexanone oxime to ε-caprolactam. J. Catal. 1999, 186, 12–19.

    CAS  Google Scholar 

  9. Vaschetto, E. G.; Casuscelli, S. G.; Eimer, G. A. Improvements in the Beckmann rearrangement process by using highly selective mesoporous catalysts. Micropor. Mesopor. Mat. 2016, 221, 175–181.

    CAS  Google Scholar 

  10. Potter, M. E.; Kezina, J.; Bounds, R.; Carravetta, M.; Mezza, T. M.; Raja, R. Investigating the role of framework topology and accessible active sites in silicoaluminophosphates for modulating acid-catalysis. Catal. Sci. Technol. 2018, 8, 5155–5164.

    CAS  Google Scholar 

  11. Kumar, R.; Shah, S.; Bahadur, J.; Melnichenko, Y. B.; Sen, D.; Mazumder, S.; Vinod, C. P.; Chowdhury, B. Highly stable In-SBA-15 catalyst for vapor phase Beckmann rearrangement reaction. Micropor. Mesopor. Mater. 2016, 234, 293–302.

    CAS  Google Scholar 

  12. Fernández, A. B.; Boronat, M.; Blasco, T.; Corma, A. Establishing a molecular mechanism for the Beckmann rearrangement of oximes over microporous molecular sieves. Angew. Chem., Int. Ed. 2005, 44, 2370–2373.

    Google Scholar 

  13. Marthala, V. R. R.; Jiang, Y. J.; Huang, J.; Wang, W.; Gläser, R.; Hunger, M. Beckmann rearrangement of 15N-cyclohexanone oxime on zeolites silicalite-1, H-ZSM-5, and H-[B]ZSM-5 studied by solid-state NMR spectroscopy. J. Am. Chem. Soc. 2006, 128, 14812–14813.

    CAS  Google Scholar 

  14. Yashima, T.; Oka, N.; Komatsu, T. Vapor phase Beckmann rearrangement of cyclohexanone oxime on the zeolite catalysts. Catal. Today 1997, 38, 249–253.

    CAS  Google Scholar 

  15. Zong, B. N.; Sun, B.; Cheng, S. B.; Mu, X. H.; Yang, K. Y.; Zhao, J. Q.; Zhang, X. X.; Wu, W. Green production technology of the monomer of nylon-6: Caprolactam. Engineering 2017, 3, 379–384.

    Google Scholar 

  16. Du, C. C.; Zhang, J. S.; Li, L. T.; Wang, K.; Luo, G. S. A modified mixed-acid catalytic system for Beckmann rearrangement of cyclohexanone oxime. AIChE J. 2019, 65, e16603.

    Google Scholar 

  17. Komatsu, T.; Maeda, T.; Yashima, T. Kinetic study on the effect of solvent in “vappr-phase” Beckmann rearrangement of cyclohexanone oxime on silicalite-1. Micropor. Mesopor. 2000, 35-36, 173–180.

    Google Scholar 

  18. Zhang, Y. F.; Xu, L. J.; Zhang, J.; Li, P. D.; Yuan, Y. Y.; Guo, H. C.; Zhang, X. M.; Xu, L. Insight into the dissolution-crystallization strategy towards macro/meso/microporous silicalite-1 zeolites and their performance in the Beckmann rearrangement of cyclohexanone oxime. Catal. Sci. Technol. 2018, 8, 4526–4536.

    CAS  Google Scholar 

  19. Ge, C.; Sun, X. J.; Lian, D. D.; Li, Z. K.; Wu, J. B. Controllable synthesis and structure—performance relationship of silicalite-1 nanosheets in vapor phase beckmann rearrangement of cyclohexanone oxime. Catal. Lett. 2020, 151, 1488–1498.

    Google Scholar 

  20. Curtin, T.; Mcmonagle, J. B.; Ruwet, M.; Hodnett, B. K. Deactivation and regeneration of alumina catalysts for the rearrangement of cyclohexanone oxime into caprolactam. J. Catal. 1993, 142, 172–181.

    CAS  Google Scholar 

  21. Heitmann, G. P.; Dahlhoff, G.; Hölderich, W. F. Modified Beta zeolites as catalysts for the Beckmann rearrangement of cyclohexanone oxime. Appl. Catal. A: Gen. 1999, 185, 99–108.

    CAS  Google Scholar 

  22. Mao, D. S.; Lu, G. Z.; Chen, Q. L. Deactivation and regeneration of the B2O3/TiO2-ZrO2 catalyst in the vapor phase Beckmann rearrangement of cyclohexanone oxime. J. Mol. Catal. A: Chem. 2005, 240, 164–171.

    CAS  Google Scholar 

  23. Wei, H. J.; Zhao, T.; Liu, Y. Q.; Li, G. H.; Wang, X. Y.; Li, B. J. Synthesis of TS-1 submicrocrystals from inorganic reactants by a seed method for the vapor Beckmann rearrangement of cyclohexanone oxime. RSC Adv. 2013, 3, 20811–20815.

    CAS  Google Scholar 

  24. Newland, S. H.; Sinkler, W.; Mezza, T.; Bare, S. R.; Carravetta, M.; Haies, I. M.; Levy, A.; Keenan, S.; Raja, R. Expanding beyond the micropore: Active-site engineering in hierarchical architectures for beckmann rearrangement. ACS Catal. 2015, 5, 6587–6593.

    CAS  Google Scholar 

  25. Chang, A.; Hsiao, H. M.; Chen, T. H.; Chu, M. W.; Yang, C. M. Hierarchical silicalite-1 octahedra comprising highly-branched orthogonally-stacked nanoplates as efficient catalysts for vapor-phase Beckmann rearrangement. Chem. Commun. 2016, 52, 11939–11942.

    CAS  Google Scholar 

  26. Abate, S.; Barbera, K.; Centi, G.; Lanzafame, P.; Perathoner, S. Disruptive catalysis by zeolites. Catal. Sci. Technol. 2016, 6, 2485–2501.

    CAS  Google Scholar 

  27. Forni, L.; Fornasari, G.; Trifirò, F.; Aloise, A.; Katovic, A.; Giordano, G.; Nagy, J. B. Calcination and deboronation of B-MFI applied to the vapour phase Beckmann rearrangement. Micropor. Mesopor. Mater. 2007, 101, 161–168.

    CAS  Google Scholar 

  28. Kim, J.; Park, W.; Ryoo, R. Surfactant-directed zeolite nanosheets: A high-performance catalyst for gas-phase beckmann rearrangement. ACS Catal. 2011, 1, 337–341.

    CAS  Google Scholar 

  29. Forni, L.; Fornasari, G.; Giordano, G.; Lucarelli, C.; Katovic, A.; Trifirò, F.; Perri, C.; Nagy, J. B. Vapor phase Beckmann rearrangement using high silica zeolite catalyst. Phys. Chem. Chem. Phys. 2004, 6, 1842–1847.

    CAS  Google Scholar 

  30. **a, C. J.; Lin, M.; Zheng, A. G.; **ang, Y. J.; Zhu, B.; Xu, G. T.; Shu, X. T. Irreversible deactivation of hollow TS-1 zeolite caused by the formation of acidic amorphous TiO2-SiO2 nanoparticles in a commercial cyclohexanone ammoximation process. J. Catal. 2016, 338, 340–348.

    CAS  Google Scholar 

  31. Wang, Y. R.; Lin, M.; Tuel, A. Hollow TS-1 crystals formed via a dissolution—recrystallization process. Micropor. Mesopor. Mater. 2007, 102, 80–85.

    CAS  Google Scholar 

  32. Pagis, C.; Prates, A. R. M.; Farrusseng, D.; Bats, N.; Tuel, A. Hollow zeolite structures: An overview of synthesis methods. Chem. Mater. 2016, 28, 5205–5223.

    CAS  Google Scholar 

  33. Tuel, A.; Farrusseng, D. Hollow zeolite single crystals: Synthesis routes and functionalization methods. Small Methods 2018, 2, 1800197.

    Google Scholar 

  34. Ge, C.; Li, Z. K.; Chen, G.; Qin, Z. F.; Li, X. F.; Dou, T.; Dong, M.; Chen, J. G.; Wang, J. G.; Fan, W. B. Kinetic study of vapor-phase Beckmann rearrangement of cyclohexanone oxime over silicalite-1. Chem. Eng. Sci. 2016, 153, 246–254.

    Google Scholar 

  35. Hufton, J. R.; Ruthven, D. M. Diffusion of light alkanes in silicalite studied by the zero length column method. Ind. Eng. Chem. Res. 1993, 32, 2379–2386.

    CAS  Google Scholar 

  36. Han, M. H.; Yin, X. Y.; **, Y.; Chen, S. Diffusion of aromatic hydrocarbon in ZSM-5 studied by the improved zero length column method. Ind. Eng. Chem. Res. 1999, 38, 3172–3175.

    CAS  Google Scholar 

  37. Lin, M.; Zhou, S. L.; Zhang, C. X.; Li, Y. X.; Wang, C. Q.; Shu, X. T. An efficient preparation method of Y zeolite-based catalyst for Isobutane-butene alkylation. Fuel 2022, 328, 125371.

    CAS  Google Scholar 

  38. Zhang, Y.; **a, C. J.; Lin, M.; Duan, Q. H.; Zhu, B.; Peng, X. X.; Wang, B. R.; Yuan, S.; Liu, Y. N.; Shu, X. T. Sponge-structured titanosilicate zeolite with high catalytic activity in epoxidation of fatty acid methyl ester. Catal. Commun. 2017, 101, 1–4.

    Google Scholar 

  39. Yin, C. Y.; He, J.; Liu, S. Synthesis of mesoporous silicalite-1 zeolite for the vapor phase Beckmann rearrangement of cyclohexanone oxime. Micropor. Mesopor. Mater. 2020, 307, 110517.

    CAS  Google Scholar 

  40. Lezcano-González, I.; Boronat, M.; Blasco, T. Investigation on the Beckmann rearrangement reaction catalyzed by porous solids: MAS NMR and theoretical calculations. Solid State Nucl. Magn. Reson. 2009, 35, 120–129.

    Google Scholar 

  41. Ronchin, L.; Bortoluzzi, M.; Vavasori, A. A DFT study on secondary reaction pathways in the acid-catalysed Beckmann rearrangement of cyclohexanone oxime in aprotic solvent. J. Mol. Struct. THEOCHEM 2008, 858, 46–51.

    CAS  Google Scholar 

  42. Forni, L.; Tosi, C.; Fornasari, G.; Trifirò, F.; Vaccari, A.; Nagy, J. B. Vapour-phase Beckmann rearrangement of cyclohexanone-oxime over Al-MCM-41 type mesostructured catalysts. J. Mol. Catal. A: Chem. 2004, 221, 97–103.

    CAS  Google Scholar 

  43. Dalstein, L.; Potapova, E.; Tyrode, E. The elusive silica/water interface: Isolated silanols under water as revealed by vibrational sum frequency spectroscopy. Phys. Chem. Chem. Phys. 2017, 19, 10343–10349.

    CAS  Google Scholar 

  44. Dib, E.; Costa, I. M.; Vayssilov, G. N.; Aleksandrov, H. A.; Mintova, S. Complex H-bonded silanol network in zeolites revealed by IR and NMR spectroscopy combined with DFT calculations. J. Mater. Chem. A 2021, 9, 27347–27352.

    CAS  Google Scholar 

  45. Marthala, V. R. R.; Rabl, S.; Huang, J.; Rezai, S. A. S.; Thomas, B.; Hunger, M. In situ solid-state NMR investigations of the vapor-phase Beckmann rearrangement of 15N-cyclohexanone oxime on MFI-type zeolites and mesoporous SBA-15 materials in the absence and presence of the additive 13C-methanol. J. Catal. 2008, 257, 134–141.

    CAS  Google Scholar 

  46. Rimola, A.; Costa, D.; Sodupe, M.; Lambert, J. F.; Ugliengo, P. Silica surface features and their role in the adsorption of biomolecules: Computational modeling and experiments. Chem. Rev. 2013, 113, 4216–4313.

    CAS  Google Scholar 

  47. Sirijaraensre, J.; Limtrakul, J. Effect of the acidic strength on the vapor phase Beckmann rearrangement of cyclohexanone oxime over the MFI zeolite: An embedded ONIOM study. Phys. Chem. Chem. Phys. 2009, 11, 578–585.

    CAS  Google Scholar 

  48. Ichihashi, H.; Kitamura, M. Some aspects of the vapor phase Beckmann rearrangement for the production of ε-caprolactam over high silica MFI zeolites. Catal. Today 2002, 73, 23–28.

    CAS  Google Scholar 

  49. **, X.; Peng, R. S.; Tong, W.; Yin, J. P.; Xu, H.; Wu, P. Investigation of the active centers and structural modifications for TS-1 in catalyzing the Beckmann rearrangement. Catal. Today 2022, 405-406, 193–202.

    Google Scholar 

  50. Munakata, H.; Koyama, T. R.; Yashima, T.; Asakawa, N.; O-Nuki, T.; Motokura, K.; Miyaji, A.; Baba, T. Temperature effect on 1H chemical shift of hydroxyl groups in zeolites and their catalytic activities as solid acids. J. Phys. Chem. C 2012, 116, 14551–14560.

    CAS  Google Scholar 

  51. Dubray, F.; Dib, E.; Medeiros-Costa, I.; Aquino, C.; Minoux, D.; van Daele, S.; Nesterenko, N.; Gilson, J. P.; Mintova, S. The challenge of silanol species characterization in zeolites. Inorg. Chem. Front. 2022, 9, 1125–1133.

    CAS  Google Scholar 

  52. Schroeder, C.; Siozios, V.; Hunger, M.; Hansen, M. R.; Koller, H. Disentangling brønsted acid sites and hydrogen-bonded silanol groups in high-silica zeolite H-ZSM-5. J. Phys. Chem. C 2020, 124, 23380–23386.

    CAS  Google Scholar 

  53. Yi, X. F.; **ao, Y.; Li, G. C.; Liu, Z. Q.; Chen, W.; Liu, S. B.; Zheng, A. M. From one to two: Acidic proton spatial networks in porous zeolite materials. Chem. Mater. 2020, 32, 1332–1342.

    CAS  Google Scholar 

  54. Chen, X.; Fu, Y. Y.; Yue, B.; He, H. Y. Acidity and basicity of solid acid catalysts studied by solid-state NMR. Chin. J. Magn. Reson 2021, 38, 491–502.

    CAS  Google Scholar 

  55. Shi, K. M.; Pedersen, C. M.; Chang, H.; Shi, J.; Wang, Y. X.; Qiao, Y. Characterization of the acidity and basicity of green solvents by NMR techniques. Magnetic Resonance Letters 2021, 1, 81–88.

    CAS  Google Scholar 

  56. Peng, Y. K.; Tsang, S. C. E. Probe-assisted NMR: Recent progress on the surface study of crystalline metal oxides with various terminated facets. Magnetic Resonance Letters 2022, 2, 9–16.

    CAS  Google Scholar 

  57. Liu, Y. J.; **ao, Y.; **a, C. J.; Yi, X. F.; Zhao, Y.; Yuan, J. M.; Huang, K. M.; Zhu, B.; Zheng, A. M.; Lin, M. et al. Insight into the effects of acid characteristics on the catalytic performance of Sn-MFI zeolites in the transformation of dihydroxyacetone to methyl lactate. J. Catal. 2020, 391, 386–396.

    CAS  Google Scholar 

  58. Yi, X. F.; Ko, H. H.; Deng, F.; Liu, S. B.; Zheng, A. M. Solid-state 31P NMR map** of active centers and relevant spatial correlations in solid acid catalysts. Nat. Protoc. 2020, 15, 3527–3555.

    CAS  Google Scholar 

  59. Yi, F. J.; Chen, Y. L.; Tao, Z. C.; Hu, C. X.; Yi, X. F.; Zheng, A. M.; Wen, X. D.; Yun, Y. F.; Yang, Y.; Li, Y. W. Origin of weak Lewis acids on silanol nests in dealuminated zeolite Beta. J. Catal. 2019, 380, 204–214.

    CAS  Google Scholar 

  60. Medeiros-Costa, I. C.; Dib, E.; Nesterenko, N.; Dath, J. P.; Gilson, J. P.; Mintova, S. Silanol defect engineering and healing in zeolites: Opportunities to fine-tune their properties and performances. Chem. Soc. Rev. 2021, 50, 11156–11179.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Basic Research Development Plan “973” Project (No. 2006CB202508), the National Key R&D Program of China (No. 2021YFA1502600), State Key Laboratory of Catalytic Materials and Reaction Engineering (RIPP, SINOPEC) (No. 33600000-20-ZC0607-0024), the SINOPEC Project (Nos. 411058 and 413025), and the National Natural Science Foundation (Nos. 21808244, 22178347, and 22072182).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changjiu **a, Anmin Zheng or **aoxin Zhang.

Electronic Supplementary Material

12274_2022_5305_MOESM1_ESM.pdf

Rational construction of multiple hollow silicalite-1 zeolite with enhanced quasi acidity for robust vapor-phase Beckmann rearrangement

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Yi, X., **a, C. et al. Rational construction of multiple hollow silicalite-1 zeolite with enhanced quasi acidity for robust vapor-phase Beckmann rearrangement. Nano Res. 16, 7958–7966 (2023). https://doi.org/10.1007/s12274-022-5305-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5305-3

Keywords

Navigation