Log in

The Ultra-Deep Desulfurization of Model Oil Using Amphipathic Lindqvist-Type Polyoxometalate-Based TiO2 Nanofibres as Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A new amphipathic lindqvist-type polyoxometalate-based TiO2 nanofibres catalysts (50-DTA-MoO-TiO2 NF, DTA = CH3(CH2)11(CH3)3N, MoO = Mo6O192-, TiO2 NF = TiO2 nanofibres, the weight percentage of DTA-MoO was 50%) was obtained by electrospinning and applied in desulfurization of fuel. This catalyst presented outstanding desulfurization performance and reusability.

Graphic Abstract

The amphipathic lindqvist-type polyoxometalate-based TiO2 nanofibres were prepared successfully and examined as heterogeneous catalysts in removal of sulfur-containing compounds. At 333 K, 100% desulfurization efficiency of 500 ppm DBT model oil was achieved using 0.010 g 50-DTA-MoO-TiO2 NF as catalyst in 40 min with O/S molar ratio of 2:1 in ECODS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Tian YS, Wang GH, Juan L et al (2016) Chin J Catal 37:2098–2105

    CAS  Google Scholar 

  2. Zhang M, Liu JQ, Li HP et al (2020) Appl Catal B-Environ 271:118936–118944

    CAS  Google Scholar 

  3. Zhao K, Cheng H, Liu C et al (2015) RSC Adv 5:66013–66023

    CAS  Google Scholar 

  4. Shi YW, Zhang XW, Liu GZ (2015) ACS Sustain Chem Eng 3:2237–2246

    CAS  Google Scholar 

  5. Dou SY, Wang R (2019) Chem Eng J 369:64–76

    CAS  Google Scholar 

  6. Hu YW, He QH, Zhang Z et al (2011) Chem Commun 47:12194–12196

    CAS  Google Scholar 

  7. Ding WJ, Zhu WS, **ong J et al (2015) Chem Eng J 266:213–221

    CAS  Google Scholar 

  8. Xu Y, Ma WW, Dolo A et al (2016) RSC Adv 6:66841–66846

    CAS  Google Scholar 

  9. Shen C, Wang YJ, Xu JH et al (2016) Green Chem 18:771–781

    CAS  Google Scholar 

  10. Ma WW, Xu Y, Ma KW et al (2016) Appl Catal A Gen 526:147–154

    CAS  Google Scholar 

  11. Rezvani MA, Asli MAN, Oveisi M et al (2016) RSC Adv 6:53069–53079

    CAS  Google Scholar 

  12. Banisharif F, Dehghani MR, Capel-Sanchez MC et al (2017) Ind Eng Chem Res 56:3839–3852

    CAS  Google Scholar 

  13. Cherevan AS, Nandan SP, Roger I et al (2020) Adv Sci 7:1903511–1903535

    CAS  Google Scholar 

  14. Rezvani MA, Miri OF (2019) Chem Eng J 369:775–783

    CAS  Google Scholar 

  15. Magueres PL, Hubig SM, Lindeman SV et al (2000) J Am Chem Soc 122:10073–10082

    CAS  Google Scholar 

  16. Xun SH, Zheng D, Yin S et al (2016) RSC Adv 6:42402–42412

    CAS  Google Scholar 

  17. Xun SH, Zhu WS, Zheng D et al (2015) RSC Adv 5:43528–43536

    CAS  Google Scholar 

  18. Yan XM, Mei P, Lei JH et al (2009) J Mol Catal A Chem 304:52–57

    CAS  Google Scholar 

  19. Yue D, Lei JH, Peng Y et al (2018) Fuel 226:148–155

    CAS  Google Scholar 

  20. Carda-Broch S, Berthod A, Armstrong DW (2003) Anal Bioanal Chem 375:191–199

    CAS  PubMed  Google Scholar 

  21. Ma WW, Xu Y, Ma KW et al (2017) Mol Catal 433:28–36

    CAS  Google Scholar 

  22. Rezvani MA, Shaterian M, Akbarzadeh F et al (2018) Chem Eng J 333:537–544

    CAS  Google Scholar 

  23. Sharma S, Ghosh SK, Kumar M et al (2015) Polyhedron 100:290–295

    CAS  Google Scholar 

  24. Guo Y, Fu JW, Li L et al (2018) Inorg Chem Front 5:2205–2211

    CAS  Google Scholar 

  25. Wu L, Yu JC, Zhang L et al (2004) Sol State Chem 177:2584–2590

    CAS  Google Scholar 

  26. Lv HY, Deng CL, Ren WZ et al (2014) Fuel Process Technol 119:87–91

    Google Scholar 

  27. Kocijan A, Milosev I, Pihlar B (2004) J Mater Sci Mater Med 15:643–650

    CAS  PubMed  Google Scholar 

  28. Palanisamy B, Badu CM, Sundaravel B et al (2013) J Hazard Mater 25:233–242

    Google Scholar 

  29. Bazayari A, Khodadadi AA, Mamaghani AH et al (2016) Appl Catal B 180:65–77

    Google Scholar 

  30. Zhang J, Wang AJ, Li X et al (2011) J Catal 279:269–275

    CAS  Google Scholar 

  31. Collins FM, Lucy AR, Sharp C (1997) J Mol Catal A Chem 117:397–403

    CAS  Google Scholar 

  32. Fu JW, Guo Y, Ma WW et al (2018) J Mater Sci 53:15418–15429

    CAS  Google Scholar 

  33. Zhu MY, Luo GQ, Kang LH et al (2014) RSC Adv 4:16769–16776

    CAS  Google Scholar 

  34. Zhang JT, Zhu WS, Li HM et al (2009) Green Chem 11:1801–1807

    CAS  Google Scholar 

  35. Shah AT, Li B, Abdalla ZE (2009) J Colloid Interface Sci 336:707–711

    CAS  PubMed  Google Scholar 

  36. Hu XF, Lu YK, Dai FN et al (2013) Microporous Mesoporous Mater 170:36–44

    CAS  Google Scholar 

  37. Jiang YQ, Zhu WS, Li HM et al (2011) Chem Sus Chem 4:399–403

    CAS  Google Scholar 

  38. Zhu WS, Li HM, Jiang X et al (2008) Green Chem 10:641–646

    CAS  Google Scholar 

  39. Lv H, Ren W, Wang H et al (2013) Appl Catal A 453:376–382

    Google Scholar 

  40. Saha BW, Kumar SM, Sengupta SL (2019) Chem Eng Sci 199:332–341

    CAS  Google Scholar 

  41. Yang ZH, Gui B, Zhou CX et al (2009) Chin J Appl Chem 26:1315–1319

    CAS  Google Scholar 

  42. Li H, Jiang X, Zhu WS et al (2009) Ind Eng Chem Res 48:9034–9039

    CAS  Google Scholar 

  43. Maity U, Selvin R, Basu JK et al (2012) J Nanoeng Nanomanuf 2:241–247

    CAS  Google Scholar 

  44. Zhang M, Zhu WS, Xun SH et al (2013) Chem Eng J 220:328–336

    CAS  Google Scholar 

  45. Qiu L, Cheng Y, Yang C et al (2016) RSC Adv 6(2016):17036–17078

    CAS  Google Scholar 

  46. Yang C, Zhao K, Cheng Y et al (2016) Sep Purif Technol 163:153–161

    CAS  Google Scholar 

  47. Xu JH, Zhao S, Ji YC et al (2013) Chem Eur J 19:709–715

    CAS  PubMed  Google Scholar 

  48. Dai BL, Wu PW, Zhu WS et al (2016) RSC Adv 6:140–147

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledged for the financial support from the NSF of China (21271038, 21571032), the China High-Tech Development 863 Program (2007AA03Z218), Youth Project of the Universities in Liaoning Province (LQN201719) and Doctoral Research Start-up Fund Project of Liaoning Provence (2019-BS-215). Furthermore, the excellent platform of analysis was provided by the Northeast Normal University, we expressed appreciate for these help. There are no conflicts of interest for each contributing author.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenwen Ma or Hong Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOC 381 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, J., Ma, W., Guo, Y. et al. The Ultra-Deep Desulfurization of Model Oil Using Amphipathic Lindqvist-Type Polyoxometalate-Based TiO2 Nanofibres as Catalysts. Catal Lett 151, 2027–2037 (2021). https://doi.org/10.1007/s10562-020-03432-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03432-4

Keywords

Navigation