Log in

Deep oxidative desulfurization of simulated and real gas oils by NiFe2O4@SiO2-DETA@POM as a retrievable hybrid nanocatalyst

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Magnetic nanoparticles surrounded with a silica shell are useful materials to immobilize active agents on their surface. Here, a heteropolyacid-functionalized hybrid nanomaterial (NiFe2O4@SiO2-DETA@POM) was prepared and characterized by X-ray powder diffraction patterns (XRD), Fourier-transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA/DTG), vibrating sample magnetometer (VSM), the field emission scanning electron microscopy (FE-SEM), and the electron-dispersive X-ray spectroscopy (EDS). The synthesized hybrid nanostructure was used as a solid nanocatalyst in oxidative desulfurization (ODS) of real fuel and simulated gasoline samples. The ODS process of benzothiophene (BT) and dibenzothiophene (DBT) as model compounds in the presence of NiFe2O4@SiO2-DETA@POM and by using urea-hydrogen peroxide/acetic acid as a safer oxidizing agent was investigated. A good result was obtained by removing 97% of benzothiophene and 98% of dibenzothiophene. Also, 96% of the sulfur compounds were eliminated when the ODS process was tested on a real crude oil sample (600 ppm) under an optimized dosage of nanocatalyst, urea-hydrogen peroxide/acetic acid (0.1 g, 1 g/4 ml) at 50 ºC for 60 min. NiFe2O4@SiO2-DETA@POM could be recycled for five consecutive oxidation runs without significant deterioration in its catalytic activity. The UHP’s safety and efficiency as an oxidant, high removal efficacy, short transformation times, easy workup procedure, catalyst reusability, simple separation of nanocatalyst, green conditions, and environmental compatibility and sustainability. The obtained results prove that NiFe2O4@SiO2-DETA@POM is a suitable and efficient hybrid catalyst for the oxidative desulfurization of simulated and real fuels.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 2
Fig. 11

Similar content being viewed by others

Data availability

There is no additional data.

References

Download references

Funding

The authors acknowledge the financial support of this work by the Research Council of Arak University.

Author information

Authors and Affiliations

Authors

Contributions

M.A Bodaghifard conceived, planned, and supervised the project. P. Bayat carried out the experiments and analyses. M. Hamidinasab advised the project and wrote the manuscript with support from M.A. Bodaghifard. All authors discussed the results and contributed to the final manuscript. M.A. Bodaghifard revised the final version of the manuscript.

Corresponding author

Correspondence to Mohammad Ali Bodaghifard.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: George Z. Kyzas

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bodaghifard, M.A., Hamidinasab, M. & Bayat, P. Deep oxidative desulfurization of simulated and real gas oils by NiFe2O4@SiO2-DETA@POM as a retrievable hybrid nanocatalyst. Environ Sci Pollut Res 30, 57821–57832 (2023). https://doi.org/10.1007/s11356-023-26614-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-26614-0

Keywords

Navigation