Log in

Genetic structure and diversity of a newly invasive species, the codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae) in China

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Cydia pomonella (L.) was firstly reported in China in the 1950s and considered as one of the most serious invasive pest in fruit orchards of China. It spread rapidly from the original site in **njiang to other northwestern regions. The pest has further penetrated northeastern China since 2006. With its rapid invasion rate, most pome fruit production areas of China are being threatened. As yet there has been no research into the genetic diversity and structure of the codling moth population in China. We investigated the genetic variations of 12 C. pomonella populations collected from the main distribution regions (**njiang, Gansu and Heilongjiang Provinces) in China and compared them with one German and one Swiss population using eight microsatellites loci to infer the characteristics of genetic diversity and genetic structure. We observed sequential loss of genetic diversity and significant structuring associated with distribution but no significant correlation between genetic distance and geographic distance among northwestern populations. There was no genetic evidence for bottleneck effects in any of the populations. The results suggest that the loss of genetic diversity in C. pomonella populations resulted from the successive colonization of founder populations. Recent invasion history led to the lack of any bottleneck effect. The high level of population genetic structuring is related to the weak flight capacity of the codling moth and the human-aided dispersal rather than to geographic distance. These genetic data not only provide us with an understanding of the micro-evolutionary processes related to successful biological invasions, but also provide guidance for pest management strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahern RG, Hawthorne DJ, Raupp MJ (2009) Founder effects and phenotypic variation in Adelges cooleyi, an insect pest introduced to the eastern United States. Biol Invasions 11:959–971

    Article  Google Scholar 

  • Ayres RM, Pettigrove VJ, Hoffmann AA (2010) Low diversity and high levels of population genetic structuring in introduced eastern mosquitofish (Gambusia holbrooki) in the greater Melbourne area, Australia. Biol Invasions 12:3727–3744

    Article  Google Scholar 

  • Barnes MM (1991) Codling moth occurrence, host race formation and damage. In: Van der Guest LPS, Evenhuis HH (eds) Tortricid pests: their biology, natural enemies and control. Elsevier, Amsterdam, pp 313–328

    Google Scholar 

  • Bohonak AJ (1999) Dispersal, gene flow and population structure. Q Rev of Biol 74:21–45

    Article  CAS  Google Scholar 

  • Boivin T, Bouvier J-C, Beslay D, Sauphanor B (2004) Variability in diapause propensity within populations of a temperate insect species: interactions between insecticide resistance genes and photoperiodism. Biol J Linn Soc 83:341–351

    Article  Google Scholar 

  • Bonnet E, Van der Peer Y (2002) ZT: a software tool for simple and partial Mantel tests. J Stat Software 7:1–12

    Google Scholar 

  • Bouvier J-C, Buès R, Boivin T, Boudinhon L, Beslay D, Sauphanor B (2001) Deltamethrin resistance in the codling moth (Lepidoptera: Tortricidae): inheritance and number of genes involved. Heredity 82:456–462

    Article  Google Scholar 

  • Brown JE, Stepien CA (2009) Invasion genetics of the Eurasian round goby in North America: tracing source and spread patterns. Mol Eco 18:64–79

    CAS  Google Scholar 

  • Cardé RT, Minks AK (1995) Control of moth pests by mating disruption: successes and constraints. Ann Rev Entomol 40:559–585

    Article  Google Scholar 

  • Cham S (2002) Range expansion of the small red-eyed damselfly Erythromma viridulum (Charp.) in the British Isles. Atropos 15:3–9

    Google Scholar 

  • Chen MH, Dorn S (2009) Microsatellites reveal genetic differentiation among populations in an insect species with high genetic variability in dispersal, the codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae). Bull Entomol Res 100:75–85

    Article  PubMed  Google Scholar 

  • Ciosi M, Miller NJ, Kim KS, Giordano R, Estoup A, Guillemaud T (2008) Invasion of Europe by the western corn rootworm, Diabrotica virgifera virgifera: multiple transatlantic introductions with various reductions of genetic diversity. Mol Ecol 17:3614–3627

    Article  PubMed  CAS  Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    PubMed  CAS  Google Scholar 

  • Cristescu R, Sherwin WB, Handasyde K, Cahill V, Cooper DW (2010) Detecting bottlenecks using BOTTLENECK 1.2.02 in wild populations: the importance of the microsatellite structure. Conserv Genet 11:1043–1049

    Article  Google Scholar 

  • Dakin EE, Avise JC (2004) Microsatellite null alleles in parentage analysis. Heredity 93:504–509

    Article  PubMed  CAS  Google Scholar 

  • De Barro PJ (2005) Genetic structure of the whitefly Bemisia tabaci in the Asia-Pacific region revealed using microsatellite markers. Mol Ecol 14:3695–3718

    Article  PubMed  Google Scholar 

  • Di Rienzo A, Peterson AC, Garza JC, Valdes AM, Slatkin M, Freimer NB (1994) Mutational processes of simple-sequence repeat loci in human populations. Proc Nati Acad Sci USA 91:3166–3170

    Article  Google Scholar 

  • Dieringer D, Schlötterer C (2003) MICROSATELLITE ANALYSER (MSA): a platform independent analysis tool for large microsatellite data sets. Mol Ecol Notes 3:167–169

    Article  CAS  Google Scholar 

  • Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449

    Article  PubMed  CAS  Google Scholar 

  • Dorn S, Schumacher P, Abivardi C, Meyhöfer R (1999) Global and regional pest insects and their antagonists in orchards: spatial dynamics. Agric Ecosyst Environ 73:111–118

    Article  Google Scholar 

  • Espinoza JL, Fuentes-Contreras E, Barros W, Ramírez C (2007) Utilización de microsatélites para la determinación de la variabilidad genética de la polilla de la manzana Cydia pomonella L. (Lepidoptera: Tortricidae) en Chile Central. Agric Téc (Chile) 67:244–252

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    CAS  Google Scholar 

  • Franck P, Timm AE (2010) Population genetic structure of Cydia pomonella: a review and case study comparing spatiotemporal variation. J Appl Entomol 134:191–200

    Article  Google Scholar 

  • Franck P, Guérin F, Loiseau A, Sauphanor B (2005) Isolation and characterization of microsatellite loci in the codling moth Cydia pomonella L. (Lepidoptera, Tortricidae). Mol Ecol Notes 5:99–102

    Article  CAS  Google Scholar 

  • Franck P, Reyes M, Olivares J, Sauphanor B (2007) Genetic architecture in codling moth populations: comparison between microsatellite and insecticide resistance markers. Mol Ecol 16:3554–3564

    Article  PubMed  CAS  Google Scholar 

  • Fuentes-Contreras E, Espinoza JL, Lavandero B, Ramírez CC (2008) Population genetic structure of codling moth (Lepidoptera: Tortricidae) from apple orchards in central Chile. J Econ Entomol 101:190–198

    Article  PubMed  Google Scholar 

  • Ghabooli S, Shiganova TA, Zhan AB, Cristescu ME, Eghtesadi-Araghi P, MacIsaac HJ (2011) Multiple introductions and invasion pathways for the invasive ctenophore Mnemiopsis leidyi in Eurasia. Biol Invasions 13:679–690

    Article  Google Scholar 

  • Gillis NK, Walters LJ, Fernandes FC, Hoffman EA (2009) Higher genetic diversity in introduced than in native populations of the mussel Mytella charruana: evidence of population admixture at introduction sites. Divers Distrib 15:784–795

    Article  Google Scholar 

  • Grapputo A, Boman S, Lindstrom L, Lyytinen A, Mappes J (2005) The voyage of an invasive species across continents: genetic diversity of North American and European Colorado potato beetle populations. Mol Ecol 14:4207–4219

    Article  PubMed  CAS  Google Scholar 

  • Herborg L-M, Weetman D, van Oosterhout C, Hanfling B (2007) Genetic population structure and contemporary dispersal patterns of a recent invader, the Chinese mitten crab, Eriocheir sinensis. Mol Ecol 16:231–242

    Article  PubMed  CAS  Google Scholar 

  • Higbee BS, Calkins CO, Temple CA (2001) Overwintering of codling moth (Lepidoptera: Tortricidae) larvae in apple harvest bins and subsequent moth emergence. J Econ Entomol 94:1511–1517

    Article  PubMed  CAS  Google Scholar 

  • Hufbauer RA, Bogdanowicz SM, Harrison RG (2004) The population genetics of a biological control introduction: mitochondrial DNA and microsatellite variation in native and introduced populations of Aphidus ervis, a parasitoid wasp. Mol Ecol 13:337–348

    Article  PubMed  CAS  Google Scholar 

  • Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17:386–391

    Article  Google Scholar 

  • Luikart G, Sherwin WB, Steele BM, Allendorf FW (1998) Usefulness of molecular markers for detecting population bottlenecks via monitoring genetic change. Mol Ecol 7:963–974

    Article  PubMed  CAS  Google Scholar 

  • Mani E, Wildbolz T (1977) The dispersal of male codling moths (Laspeyresia pomonella L.) in the Upper Rhine Valley. J Appl Entomol 47:39–48

    Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Canc Res 27:209–220

    CAS  Google Scholar 

  • Margaritopoulos JT, Kasprowicz L, Malloch GL, Fenton B (2009) Tracking the global dispersal of a cosmopolitan insect pest, the peach potato aphid. BMC Ecol 9:13

    Article  PubMed  Google Scholar 

  • Meglécz E, Petenian F, Danchin E, Coeur D’Acier A, Rasplus J-Y, Faure E (2004) High similarity between flanking regions of different microsatellites detected within each of two species of Lepidoptera: Parnassius apollo and Euphydryas aurinia. Mol Ecol 13:1693–1700

    Article  PubMed  Google Scholar 

  • Meng XF, Shi M, Chen XX (2008) Population genetic structure of Chilo suppressalis (Walker) (Lepidoptera: Crambidae): strong subdivision in China inferred from microsatellite markers and mtDNA gene sequences. Mol Ecol 17:2880–2897

    Article  PubMed  CAS  Google Scholar 

  • Meraner A, Brandstätter A, Thaler R, Aray B, Unterlechner M, Niederstätter H, Parson W, Zelger R, Dalla Via J, Dallinger R (2008) Molecular phylogeny and population structure of the codling moth (Cydia pomonella) in Central Europe: I. Ancient clade splitting revealed by mitochondrial haplotype markers. Mol Phylogenet Evol 48:825–837

    Article  PubMed  CAS  Google Scholar 

  • Miller NJ, Birley AJ, Overall ADJ, Tatchell GM (2003) Population genetic structure of the lettuce root aphid, Pemphigus bursarius (L.), in relation to geographic distance, gene flow and host plant usage. Heredity 91:217–223

    Article  PubMed  CAS  Google Scholar 

  • Mozaffarian F, Mardi M, Sarafrazi A, Ganbalani N (2007) Assessment of geographic and host-associated population variations of the carob moth, Ectomyelois ceratoniae, on pomegranate, fig, pistachio and walnut, using AFLP markers. J Insect Sci 8:6

    Google Scholar 

  • Myers CT, Hull LA, Krawczyk G (2006) Comparative survival rates of oriental fruit moth (Lepidoptera: Tortricidae) larvae on shoots and fruit of apple and peach. J Econ Entomol 99:1299–1309

    Article  PubMed  Google Scholar 

  • Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29:1–10

    Article  Google Scholar 

  • Novak SJ, Mack RN (1993) Genetic variation in Bromus tectorum (Poaceae): comparison between native and introduced populations. Heredity 71:167–176

    Article  Google Scholar 

  • Orsini L, Corander J, Alasentie A, Hanski I (2008) Genetic spatial structure in a butterfly metapopulation correlates better with past than present demographic structure. Mol Ecol 17:2629–2642

    Article  PubMed  CAS  Google Scholar 

  • Parr AJ (2005) Migrant and dispersive dragonflies in Britain during 2004. J Br Dragonfly Soc 21:14–20

    Google Scholar 

  • Paupy C, Chantha N, Reynes J-M, Failloux A-B (2005) Factors influencing the population structure of Aedes aegypti from the main cities in Cambodia. Heredity 95:144–147

    Article  PubMed  CAS  Google Scholar 

  • Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in effective population size from allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  • Primmer CR, Saino N, Møller AP, Ellegren H (1998) Unraveling the processes of microsatellite evolution through analysis of germ line mutations in barn swallows, Hirundo rustica. Mol Biol Evol 15:1047–1054

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Pruett CI, Winker K (2005) Northwestern song sparrow populations show genetic effects of sequential colonization. Mol Ecol 14:1421–1434

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran S, Deshpande O, Roseman CC, Rosenberg NA, Feldman MW, Cavalli-Sforza LL (2005) Support from the relationship of genetic and geographic distance in human populations for a serial founder effect originating in Africa. Proc Natl Acad Sci USA 102:15942–15947

    Article  PubMed  CAS  Google Scholar 

  • Ramstad KM, Woody CA, Sage GK, Allendorf FW (2004) Founding events influence genetic population structure of sockeye salmon (Oncorhynchus nerka) in Lake Clark, Alaska. Mol Ecol 13:277–290

    Article  PubMed  CAS  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Roff DA (1994) The evolution of flightlessness: is history important? Evol Ecol 8:639–657

    Article  Google Scholar 

  • Roman J, Darling JA (2007) Paradox lost: genetic diversity and success of aquatic invasions. Trends Ecol Evol 22:454–464

    Article  PubMed  Google Scholar 

  • Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Ecol Evol Notes 4:137–138

    Article  Google Scholar 

  • Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  PubMed  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234

    Article  PubMed  CAS  Google Scholar 

  • Shel‘Deshova GG (1967) Ecological factors determining distribution of the codling moth Laspeyresia pomonella (Lepidoptera: Tortricidae) in the northern and southern hemispheres. Entomol Rev 46:349–361

    Google Scholar 

  • Slatkin M (1993) Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47:264–279

    Article  Google Scholar 

  • Szpiech ZA, Jakobsson M, Rosenberg NA (2008) ADZE: a rarefaction approach for counting alleles private to combinations of populations. Bioinformatics 24:2498–2504

    Article  PubMed  CAS  Google Scholar 

  • Timm AE, Geertsema H, Warnich L (2006) Gene flow among Cydia pomonella (Lepidoptera: Tortricidae) geographic and host populations in South Africa. J Econ Entomol 99:341–348

    Article  PubMed  CAS  Google Scholar 

  • Torriani MVG, Mazzi D, Hein S, Dorn S (2010) Structured populations of the oriental fruit moth in an agricultural ecosystem. Mol Ecol 19:2651–2660

    Article  PubMed  CAS  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genoty** errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Wan FH, Guo JY, Zhang F (2009) Research on biological invasions in China. Science Press, Bei**g

    Google Scholar 

  • Watts PC, Keat S, Thompson DJ (2010) Patterns of spatial genetic structure and diversity at the onset of a rapid range expansion: colonization of the UK by the small red-eyed damselfly Erythromma viridulum. Biol Invasions 12:3887–3903

    Article  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population-structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Willett MJ, Neven L, Miller CE (2009) The occurrence of codling moth in low latitude countries: validation of pest distribution reports. Hort Technology 19:633–637

    Google Scholar 

  • Wright S (1951) The genetical structure of populations. Ann Eugen 15:323–354

    Google Scholar 

  • Wright S (1978) Evolution and genetics of populations. University of Chicago, Chicago

    Google Scholar 

  • Zhang XZ (1957) Taxonomic notes on the codling moth, Carpocapsa pomonella L. in Sinkiang. Acta Entomol Sin 7:467–472

    Google Scholar 

Download references

Acknowledgments

We thank Dr. John Richard Schrock, Emporia State University, Emporia, KS, USA, for language correction of the draft. We are grateful to Anyong Wang, Kun Dong, Chunhan Zheng, Jianqiang Yang, **ao Zhao and **nglong Huang for their help in the collection of codling moth samples. This work was supported by grants from the ‘13115’ Sci-Tech Innovation Project of Shaanxi Province (No. 2009ZDKG-06), the Special Fund for Agro-scientific Research in the Public Interest (No. 200903042-03), the National Natural Science Foundation of China (No. 31071687), the International Atomic Energy Agency (No. 16341) and the Talent Recruitment Project of Northwest A & F University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Nian Feng.

Appendix

Appendix

See Table 4.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Men, QL., Chen, MH., Zhang, YL. et al. Genetic structure and diversity of a newly invasive species, the codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae) in China. Biol Invasions 15, 447–458 (2013). https://doi.org/10.1007/s10530-012-0299-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-012-0299-5

Keywords

Navigation