Log in

Profiling and Bioinformatics Analyses of Hypoxia-Induced Differential Expression of Long Non-coding RNA in Glioblastoma Multiforme Cells

  • Original Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Hypoxic microenvironments are intricately linked to malignant characteristics of glioblastoma multiforme (GBM). Long non-coding ribonucleic acids (lncRNAs) have been reported to be involved in the progression of GBM and closely associated with hypoxia. Nevertheless, the differential expression profiles as well as functional roles of lncRNAs in GBM cells under hypoxic conditions remain largely obscure. We explored the expression profiles of lncRNAs in hypoxic U87 cells as well as T98G cells using sequencing analysis. The effect of differentially expressed lncRNAs (DElncRNAs) was assessed through bioinformatic analysis. Furthermore, the expression of lncRNAs significantly dysregulated in both U87 and T98G cells was further validated using quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Relevant cell functional experiments were also conducted. We used predicted RNA-binding proteins (RBPs) to construct an interaction network via the interaction prediction module. U87 and T98G cells showed dysregulation of 1115 and 597 lncRNAs, respectively. Gene Ontology (GO) analysis indicated that altered lncRNA expression was associated with nucleotide-excision repair and cell metabolism in GBM cells. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed the association between dysregulated lncRNAs and the Hippo signaling pathway under hypoxia. The dysregulation of six selected lncRNAs (ENST00000371192, uc003tnq.3, ENST00000262952, ENST00000609350, ENST00000610036, and NR_046262) was validated by qRT-PCR. Investigation of lncRNA-microRNA (miRNA)-mRNA networks centered on HIF-1α demonstrated cross-talk between the six validated lncRNAs and 16 related miRNAs. Functional experiments showed the significant inhibition of GBM cell proliferation, invasion, and migration by the knockdown of uc003tnq.3 in vitro. Additionally, uc003tnq.3 was used to construct a comprehensive RBP-transcription factor (TF)-miRNA interaction network. The expression of LncRNAs was dysregulated in GBM cells under hypoxic conditions. The identified six lncRNAs might exert important effect on the development of GBM under hypoxic microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The raw data supporting the conclusion of this article have been uploaded to Supplementary Appendix 4.

Abbreviations

GBM:

Glioblastoma multiforme

lncRNA:

Long non-coding ribonucleic acid

HIF-1α:

Hypoxia-induced factor-1α

qRT-PCR:

Quantitative reverse-transcription polymerase chain reaction

GO:

Gene Ontology

KEGG:

Kyoto Encyclopedia of Genes and Genomes

ncRNA:

Non-coding ribonucleic acid

ceRNA:

Competing endogenous RNA

miRNA:

MicroRNA

DElncRNA:

Differentially expressed lncRNA

siRNA:

Small interfering RNA

CCK-8 assay:

Cell counting kit-8 solution assay

OD:

Optical density

one-way ANOVA:

One-way analysis of variance

FC:

Fold change

BP:

Biological process

CC:

Cellular component

MF:

Molecular function

UHRF1:

Ubiquitin-like with PHD and RING finger domains 1

UPAT:

UHRF1-protein associated transcript

HIE:

Hypoxic ischemic encephalopathy

IGFBP3:

Insulin-like growth factor binding protein 3

RBP:

RNA-binding protein

TF:

Transcription factor

References

  • Adams BD, Parsons C, Walker L, Zhang WC, Slack FJ (2017) Targeting noncoding RNAs in disease. J Clin Invest 127:761–771

    Article  PubMed  PubMed Central  Google Scholar 

  • Alifieris C, Trafalis DT (2015) Glioblastoma multiforme: pathogenesis and treatment. Pharmacol Ther 152:63–82

    Article  CAS  PubMed  Google Scholar 

  • Amer RG, Ezz El Arab LR, Abd El Ghany D, Saad AS, Bahie-Eldin N, Swellam M (2022) Prognostic utility of lncRNAs (LINC00565 and LINC00641) as molecular markers in glioblastoma multiforme (GBM). J Neurooncol 158:435–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amjadi N, Talayeh M, Momeni M, Mansouri N (2023) The comparison of umbilical cord artery pH in newborns with and without thick meconium stained amniotic fluid. Cell Mol Biomed Rep 3:222–226

    Article  Google Scholar 

  • Bilal I, **e S, Elburki MS, Aziziaram Z, Ahmed SM, Jalal Balaky ST (2021) Cytotoxic effect of diferuloylmethane, a derivative of turmeric on different human glioblastoma cell lines. Cell Mol Biomed Rep 1:14–22

    Article  Google Scholar 

  • Bischoff FC, Werner A, John D, Boeckel JN, Melissari MT, Grote P, Glaser SF, Demolli S, Uchida S, Michalik KM, Meder B, Katus HA, Haas J, Chen W, Pullamsetti SS, Seeger W, Zeiher AM, Dimmeler S, Zehendner CM (2017) Identification and functional characterization of hypoxia-induced endoplasmic reticulum stress regulating lncRNA (HypERlnc) in pericytes. Circ Res 121:368–375

    Article  CAS  PubMed  Google Scholar 

  • Cai X, Qiu W, Qian M, Feng S, Peng C, Zhang J, Wang Y, Wang Y (2020) A Candidate prognostic biomarker complement factor i promotes malignant progression in glioma. Front Cell Dev Biol 8:615970

    Article  PubMed  Google Scholar 

  • Cai X, Chen Z, Huang C, Shen J, Zeng W, Feng S, Liu Y, Li S, Chen M (2022) Development of a novel glycolysis-related genes signature for isocitrate dehydrogenase 1-associated glioblastoma multiforme. Front Immunol 13:950917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang YN, Zhang K, Hu ZM, Qi HX, Shi ZM, Han XH, Han YW, Hong W (2016) Hypoxia-regulated lncRNAs in cancer. Gene 575:1–8

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Su S, Yang M, Wang F, Chen M (2022) Profiling and bioinformatics analyses of differential circular RNA expression in glioblastoma multiforme cells under hypoxia. J Mol Neurosci 72:2451–2463

    Article  CAS  PubMed  Google Scholar 

  • Colwell N, Larion M, Giles AJ, Seldomridge AN, Sizdahkhani S, Gilbert MR, Park DM (2017) Hypoxia in the glioblastoma microenvironment: sha** the phenotype of cancer stem-like cells. Neuro Oncol 19:887–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domenech M, Hernandez A, Plaja A, Martinez-Balibrea E, Balana C (2021) Hypoxia: the cornerstone of glioblastoma. Int J Mol Sci 22:12608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fattahi S, Kosari-Monfared M, Golpour M, Emami Z, Ghasemiyan M, Nouri M, Akhavan-Niaki H (2020) LncRNAs as potential diagnostic and prognostic biomarkers in gastric cancer: a novel approach to personalized medicine. J Cell Physiol 235:3189–3206

    Article  CAS  PubMed  Google Scholar 

  • Hua Q, Mi B, Xu F, Wen J, Zhao L, Liu J, Huang G (2020) Hypoxia-induced lncRNA-AC020978 promotes proliferation and glycolytic metabolism of non-small cell lung cancer by regulating PKM2/HIF-1alpha axis. Theranostics 10:4762–4778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jonas K, Calin GA, Pichler M (2020) RNA-binding proteins as important regulators of long non-coding RNAs in cancer. Int J Mol Sci 21:2969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanehisa M, Sato Y, Furumichi M, Morishima K, Tanabe M (2019) New approach for understanding genome variations in KEGG. Nucleic Acids Res 47:D590–D595

    Article  CAS  PubMed  Google Scholar 

  • Kechin A, Boyarskikh U, Kel A, Filipenko M (2017) cutPrimers: a new tool for accurate cutting of primers from reads of targeted next generation sequencing. J Comput Biol 24:1138–1143

    Article  CAS  PubMed  Google Scholar 

  • Koehler J, Sandey M, Prasad N, Levy SA, Wang X, Wang X (2020) Differential expression of miRNAs in hypoxia (“HypoxamiRs”) in three canine high-grade glioma cell lines. Front Vet Sci 7:104

    Article  PubMed  PubMed Central  Google Scholar 

  • Le Rhun E, Preusser M, Roth P, Reardon DA, van den Bent M, Wen P, Reifenberger G, Weller M (2019) Molecular targeted therapy of glioblastoma. Cancer Treat Rev 80:101896

    Article  PubMed  Google Scholar 

  • Liao Y, Luo Z, Lin Y, Chen H, Chen T, Xu L, Orgurek S, Berry K, Dzieciatkowska M, Reisz JA, D’Alessandro A, Zhou W, Lu QR (2022) PRMT3 drives glioblastoma progression by enhancing HIF1A and glycolytic metabolism. Cell Death Dis 13:943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linhares P, Carvalho B, Vaz R, Costa BM (2020) Glioblastoma: is there any blood biomarker with true clinical relevance? Int J Mol Sci 21:5809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Shen P, Zheng B, Yu W, Ji J, **ao Y (2020) Comparative genomic analysis of 19 clinical isolates of tigecycline-resistant Acinetobacter baumannii. Front Microbiol 11:1321

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng Z, Liu C, Wu M (2018) New insights into long noncoding RNAs and their roles in glioma. Mol Cancer 17:61

    Article  PubMed  PubMed Central  Google Scholar 

  • Postepska-Igielska A, Giwojna A, Gasri-Plotnitsky L, Schmitt N, Dold A, Ginsberg D, Grummt I (2015) LncRNA Khps1 regulates expression of the proto-oncogene SPHK1 via triplex-mediated changes in chromatin structure. Mol Cell 60:626–636

    Article  CAS  PubMed  Google Scholar 

  • Qin Y, Zhang X, Chen Y, Zhang W, Du S, Ren C (2023) Prognostic analysis of a hypoxia-associated lncrna signature in glioblastoma and its pan-cancer landscape. J Neurol Surg A Cent Eur Neurosurg. https://doi.org/10.1055/a-2070-3715

    Article  PubMed  Google Scholar 

  • Santangelo R, Rizzarelli E, Copani A (2020) Role for metallothionein-3 in the resistance of human U87 glioblastoma cells to temozolomide. ACS Omega 5:17900–17907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Touat M, Idbaih A, Sanson M, Ligon KL (2017) Glioblastoma targeted therapy: updated approaches from recent biological insights. Ann Oncol 28:1457–1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Liu S (2021) LncRNA GHET1 promotes hypoxia-induced glycolysis, proliferation, and invasion in triple-negative breast cancer through the Hippo/YAP signaling pathway. Front Cell Dev Biol 9:643515

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang H, Cao D, Wu F (2018) Long noncoding RNA UPAT promoted cell proliferation via increasing UHRF1 expression in non-small cell lung cancer. Oncol Lett 16:1491–1498

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu W, Hu Q, Nie E, Yu T, Wu Y, Zhi T, Jiang K, Shen F, Wang Y, Zhang J, You Y (2017) Hypoxia induces H19 expression through direct and indirect Hif-1α activity, promoting oncogenic effects in glioblastoma. Sci Rep 7:45029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • **ong LL, Xue LL, Du RL, Zhou HL, Tan YX, Ma Z, ** Y, Zhang ZB, Xu Y, Hu Q, Bobrovskaya L, Zhou XF, Liu J, Wang TH (2020) Vi4-miR-185-5p-Igfbp3 network protects the brain from neonatal hypoxic ischemic injury via promoting neuron survival and suppressing the cell apoptosis. Front Cell Dev Biol 8:529544

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu W, Ying Y, Shan L, Feng J, Zhang S, Gao Y, Xu X, Yao Y, Zhu C, Mao W (2015) Enhanced expression of cohesin loading factor NIPBL confers poor prognosis and chemotherapy resistance in non-small cell lung cancer. J Transl Med 13:153

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamazaki T, Souquere S, Chujo T, Kobelke S, Chong YS, Fox AH, Bond CS, Nakagawa S, Pierron G, Hirose T (2018) Functional domains of NEAT1 architectural lncRNA induce paraspeckle assembly through phase separation. Mol Cell 70:1038-1053.e1037

    Article  CAS  PubMed  Google Scholar 

  • Yao ZT, Yang YM, Sun MM, He Y, Liao L, Chen KS, Li B (2022) New insights into the interplay between long non-coding RNAs and RNA-binding proteins in cancer. Cancer Commun (lond) 42:117–140

    Article  PubMed  Google Scholar 

  • Zealy RW, Fomin M, Davila S, Makowsky D, Thigpen H, McDowell CH, Cummings JC, Lee ES, Kwon SH, Min KW, Yoon JH (2018) Long noncoding RNA complementarity and target transcripts abundance. Biochim Biophys Acta Gene Regul Mech 1861:224–234

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Li X, Yu L, Wang R, Hua D, Shi C, Sun C, Luo W, Rao C, Jiang Z, Wang Q, Yu S (2019) The RNA-binding protein SRSF1 is a key cell cycle regulator via stabilizing NEAT1 in glioma. Int J Biochem Cell Biol 113:75–86

    Article  CAS  PubMed  Google Scholar 

  • Zuin J, Casa V, Pozojevic J, Kolovos P, van den Hout M, van Ijcken WFJ, Parenti I, Braunholz D, Baron Y, Watrin E, Kaiser FJ, Wendt KS (2017) Regulation of the cohesin-loading factor NIPBL: role of the lncRNA NIPBL-AS1 and identification of a distal enhancer element. PLoS Genet 13:e1007137

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Not applicable.

Funding

This work was supported by the National Natural Science Foundation of China (grant number: 81902521), Shanghai Sailing Program (grant number: 19YF1432800), and Research Project of **nhua Hospital (grant number: XH1936).

Author information

Authors and Affiliations

Authors

Contributions

MC and BWC designed and supervised the project. XMC, MSQ, KZ, and YZL conducted the experiments and performed data analysis. BWC and XMC wrote and revised the manuscript.

Corresponding authors

Correspondence to Bowen Chang or Ming Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (ZIP 98 KB)

Supplementary file2 (ZIP 2 KB)

Supplementary file3 (ZIP 11 KB)

Supplementary file4 (ZIP 60432 KB)

Supplementary file5 Table 1. The primers of selected lncRNAs (DOCX 16 KB)

Supplementary file6 Table 2. Top 10 upregulated and downregulated lncRNAs in U87 under hypoxia (DOCX 20 KB)

Supplementary file7 Table 3. Top 5 upregulated and top 10 downregulated lncRNAs in T98G under hypoxia (DOCX 18 KB)

10528_2023_10597_MOESM8_ESM.docx

Supplementary file8 Table 4. Top 10 BP, CC and MF terms corresponding to upregulated and downregulated lncRNAs in U87 (DOCX 24 KB)

Supplementary file9 Table 5. Top 10 pathways corresponding to upregulated and downregulated lncRNAs in U87 (DOCX 17 KB)

10528_2023_10597_MOESM10_ESM.docx

Supplementary file10 Table 6. Top 10 BP, CC and MF terms corresponding to upregulated and downregulated lncRNAs in T98G(DOCX 23 KB)

10528_2023_10597_MOESM11_ESM.docx

Supplementary file11 Table 7. Top 10 pathways corresponding to upregulated and downregulated lncRNAs in T98G(DOCX 17 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, X., Qian, M., Zhang, K. et al. Profiling and Bioinformatics Analyses of Hypoxia-Induced Differential Expression of Long Non-coding RNA in Glioblastoma Multiforme Cells. Biochem Genet (2023). https://doi.org/10.1007/s10528-023-10597-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10528-023-10597-1

Keywords

Navigation