Log in

The significant mechanism and treatments of cell death in heatstroke

  • Review
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

With global warming, extreme environmental heat is becoming a social issue of concern, which can cause adverse health results including heatstroke (HS). Severe heat stress is characterized by cell death of direct heat damage, excessive inflammatory responses, and coagulation disorders that can lead to multiple organ dysfunction (MODS) and even death. However, the significant pathophysiological mechanism and treatment of HS are still not fully clear. Various modes of cell death, including apoptosis, pyroptosis, ferroptosis, necroptosis and PANoptosis are involved in MODS induced by heatstroke. In this review, we summarized molecular mechanism, key transcriptional regulation as for HSF1, NRF2, NF-κB and PARP-1, and potential therapies of cell death resulting in CNS, liver, intestine, reproductive system and kidney injury induced by heat stress. Understanding the mechanism of cell death provides new targets to protect multi-organ function in HS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Ebi KL et al (2021) Hot weather and heat extremes: health risks. Lancet 398(10301):698–708

    Article  PubMed  Google Scholar 

  2. Onozuka D, Hagihara A (2015) All-cause and cause-specific risk of emergency transport attributable to temperature: a nationwide study. Medicine (Baltimore) 94(51):e2259

    Article  PubMed  Google Scholar 

  3. Liss A, Naumova EN (2019) Heatwaves and hospitalizations due to hyperthermia in defined climate regions in the conterminous USA. Environ Monit Assess 191(Suppl 2):394

  4. Cheng YT, Lung SC, Hwang JS (2019) New approach to identifying proper thresholds for a heat warning system using health risk increments. Environ Res 170:282–292

    Article  CAS  PubMed  Google Scholar 

  5. Cheng J et al (2019) Cardiorespiratory effects of heatwaves: A systematic review and meta-analysis of global epidemiological evidence. Environ Res 177:108610

    Article  CAS  PubMed  Google Scholar 

  6. Thompson R et al (2018) Associations between high ambient temperatures and heat waves with mental health outcomes: a systematic review. Public Health 161:171–191

    Article  CAS  PubMed  Google Scholar 

  7. Liu Y et al (2019) Degrees and dollars – Health costs associated with suboptimal ambient temperature exposure. Sci Total Environ 678:702–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Epstein Y, Yanovich R (2019) Heatstroke. N Engl J Med 380(25):2449–2459

    Article  PubMed  Google Scholar 

  9. Bouchama A et al (2022) Classic and exertional heatstroke. Nat Rev Dis Primers 8(1):8

    Article  PubMed  Google Scholar 

  10. Leon LR, Bouchama A (2015) Heat stroke. Compr Physiol 5(2):611–647

    Article  PubMed  Google Scholar 

  11. Bouchama A, Knochel JP (2002) Heat stroke. N Engl J Med 346(1978–1988):2002

    Google Scholar 

  12. González-Alonso J, Quistorff B, Krustrup P, Bangsbo J, Saltin B (2000) Heat production in human skeletal muscle at the onset of intense dynamic exercise. J Physiol 524:603–615

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dong Q, **u Y, Wang Y et al (2022) HSF1 is a driver of leukemia stem cell self-renewal in acute myeloid leukemia. Nat Commun 13(1):6107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dong Q et al (2022) HSF1 is a driver of leukemia stem cell self-renewal in acute myeloid leukemia. Nat Commun 13(1):6107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang B et al (2021) Multifaceted roles of HSF1 in cell death: A state-of-the-art review. Biochim Biophys Acta Rev Cancer 1876(2):188591

    Article  CAS  PubMed  Google Scholar 

  16. Park SH et al (2020) Evaluation of the interaction between Bax and Hsp70 in cells by using a FRET system consisting of a fluorescent amino acid and YFP as a FRET pair. ChemBioChem 21(1–2):59–63

    Article  CAS  PubMed  Google Scholar 

  17. Watanabe K, Ohtsuki T (2021) Inhibition of HSF1 and SAFB granule formation enhances apoptosis induced by heat stress. Int J Mol Sci 22(9):4982

  18. Li W et al (2023) MicroRNA-217 aggravates breast cancer through activation of NF1-mediated HSF1/ATG7 axis and c-Jun/ATF3/MMP13 axis. Hum Cell 36(1):377–392

    Article  CAS  PubMed  Google Scholar 

  19. Granato M, Gilardini Montani MS, Angiolillo C, D'Orazi G, Faggioni A, Cirone M (2018) Cytotoxic Drugs Activate KSHV Lytic Cycle in Latently Infected PEL Cells by Inducing a Moderate ROS Increase Controlled by HSF1, NRF2 and p62/SQSTM1. Viruses 11(1):8

  20. Wang B et al (2022) Ferroptosis-related biomarkers for Alzheimer’s disease: Identification by bioinformatic analysis in hippocampus. Front Cell Neurosci 16:1023947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zuo C et al (2022) Nrf2: An all-rounder in depression. Redox Biol 58:102522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mahanty A, Mohanty S, Mohanty BP (2017) Dietary supplementation of curcumin augments heat stress tolerance through upregulation of nrf-2-mediated antioxidative enzymes and hsps in Puntius sophore. Fish Physiol Biochem 43(4):1131–1141

    Article  CAS  PubMed  Google Scholar 

  23. Wang Y et al (2021) S-allyl cysteine ameliorates heat stress-induced oxidative stress by activating Nrf2/HO-1 signaling pathway in BMECs. Toxicol Appl Pharmacol 416:115469

    Article  CAS  PubMed  Google Scholar 

  24. Du D et al (2022) Camel whey protein alleviates heat stress-induced liver injury by activating the Nrf2/HO-1 signaling pathway and inhibiting HMGB1 release. Cell Stress Chaperones 27(4):449–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Paszek A et al (2020) Heat shock response regulates stimulus-specificity and sensitivity of the pro-inflammatory NF-kappaB signalling. Cell Commun Signal 18(1):77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tang LP et al (2021) Heat stress inhibits expression of the cytokines, and NF-kappaB-NLRP3 signaling pathway in broiler chickens infected with salmonella typhimurium. J Therm Biol 98:102945

    Article  CAS  PubMed  Google Scholar 

  27. Liu YL et al (2022) Chronic heat stress promotes liver inflammation in broilers via enhancing NF-kappaB and NLRP3 signaling pathway. BMC Vet Res 18(1):289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huang J et al (2022) beta-Hydroxybutyric acid attenuates heat stress-induced neuroinflammation via inhibiting TLR4/p38 MAPK and NF-kappaB pathways in the hippocampus. FASEB J 36(4):e22264

    Article  CAS  PubMed  Google Scholar 

  29. Huang W et al (2020) Heat stress induces RIP1/RIP3-dependent necroptosis through the MAPK, NF-kappaB, and c-Jun signaling pathways in pulmonary vascular endothelial cells. Biochem Biophys Res Commun 528(1):206–212

    Article  CAS  PubMed  Google Scholar 

  30. **e W, Huang W, Cai S, Chen H, Fu W, Chen Z, Liu Y (2021) NF‑κB/IκBα signaling pathways are essential for resistance to heat stress‑induced ROS production in pulmonary microvascular endothelial cells. Mol Med Rep 24(5):814

  31. Wang L et al (2023) Xuebi**g injection attenuates heat stroke-induced brain injury through oxidative stress blockage and parthanatos modulation via PARP-1/AIF signaling. ACS Omega 8(37):33392–33402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mota RA et al (2008) Poly(ADP-ribose) polymerase-1 inhibition increases expression of heat shock proteins and attenuates heat stroke-induced liver injury. Crit Care Med 36(2):526–534

    Article  CAS  PubMed  Google Scholar 

  33. Bertheloot D, Latz E, Franklin BS (2021) Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell Mol Immunol 18(5):1106–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. O’Donnell MA et al (2007) Ubiquitination of RIP1 regulates an NF-kappaB-independent cell-death switch in TNF signaling. Curr Biol 17(5):418–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Medema JP, Scaffidi C, Kischkel FC, Shevchenko A, Mann M, Krammer PH, Peter ME (1997) FLICE is activated by association with the CD95 death-inducing signaling complex (DISC). EMBO J 16(10):2794–2804. https://doi.org/10.1093/emboj/16.10.2794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li Y et al (2019) Mitochondrial OXPHOS is involved in the protective effects of L-arginine against heat-induced low sperm motility of boar. J Therm Biol 84:236–244

    Article  CAS  PubMed  Google Scholar 

  37. Zhao F et al (2021) Melatonin alleviates heat stress-induced oxidative stress and apoptosis in human spermatozoa. Free Radic Biol Med 164:410–416

    Article  CAS  PubMed  Google Scholar 

  38. Zhu J et al (2022) Microglial exosomal miR-466i-5p induces brain injury via promoting hippocampal neuron apoptosis in heatstroke. Front Immunol 13:968520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen Y et al (2022) The role of microglial exosomes in brain injury. Front Cell Neurosci 16:1003809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. King MA et al (2017) Unique cytokine and chemokine responses to exertional heat stroke in mice. J Appl Physiol (1985) 122(2):296–306

    Article  CAS  PubMed  Google Scholar 

  41. Yan W et al (2012) High-mobility group box 1 activates caspase-1 and promotes hepatocellular carcinoma invasiveness and metastases. Hepatology 55(6):1863–1875

    Article  CAS  PubMed  Google Scholar 

  42. Rathinam VAK, Zhao Y, Shao F (2019) Innate immunity to intracellular LPS. Nat Immunol 20(5):527–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Newton K, Dixit VM, Kayagaki N (2021) Dying cells fan the flames of inflammation. Science 374(6571):1076–1080

    Article  CAS  PubMed  Google Scholar 

  44. Broz P, Pelegrin P, Shao F (2020) The gasdermins, a protein family executing cell death and inflammation. Nat Rev Immunol 20(3):143–157

    Article  CAS  PubMed  Google Scholar 

  45. Yuan J, Ofengeim D (2024) A guide to cell death pathways. Nat Rev Mol Cell Biol 25(5):379–395

    Article  CAS  PubMed  Google Scholar 

  46. Ding J et al (2016) Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535(7610):111–116

    Article  CAS  PubMed  Google Scholar 

  47. Geng Y et al (2015) Heatstroke induces liver injury via IL-1beta and HMGB1-induced pyroptosis. J Hepatol 63(3):622–633

    Article  CAS  PubMed  Google Scholar 

  48. Tong HS et al (2011) Early elevated HMGB1 level predicting the outcome in exertional heatstroke. J Trauma 71(4):808–814

    CAS  PubMed  Google Scholar 

  49. Tong H et al (2013) HMGB1 activity inhibition alleviating liver injury in heatstroke. J Trauma Acute Care Surg 74(3):801–807

    Article  CAS  PubMed  Google Scholar 

  50. Pei Y et al (2023) Mesenchymal stem cell-derived exosomal miR-548x-3p inhibits pyroptosis of vascular endothelial cells through HMGB1 in heat stroke. Genomics 115(6):110719

    Article  CAS  PubMed  Google Scholar 

  51. Li Y et al (2020) Proteomic analysis of extracellular vesicles released from heat-stroked hepatocytes reveals promotion of programmed cell death pathway. Biomed Pharmacother 129:110489

    Article  CAS  PubMed  Google Scholar 

  52. Sims GP et al (2010) HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol 28:367–388

    Article  CAS  PubMed  Google Scholar 

  53. Lamkanfi M (2011) Emerging inflammasome effector mechanisms. Nat Rev Immunol 11(3):213–220

    Article  CAS  PubMed  Google Scholar 

  54. Newton K (2020) Multitasking kinase RIPK1 regulates cell death and inflammation. Cold Spring Harb Perspect Biol 12(3):a036368

  55. Newton K et al (2019) Cleavage of RIPK1 by caspase-8 is crucial for limiting apoptosis and necroptosis. Nature 574(7778):428–431

    Article  CAS  PubMed  Google Scholar 

  56. Lalaoui N et al (2020) Mutations that prevent caspase cleavage of RIPK1 cause autoinflammatory disease. Nature 577(7788):103–108

    Article  CAS  PubMed  Google Scholar 

  57. Tao P et al (2020) A dominant autoinflammatory disease caused by non-cleavable variants of RIPK1. Nature 577(7788):109–114

    Article  CAS  PubMed  Google Scholar 

  58. Ai Y et al (2024) The biochemical pathways of apoptotic, necroptotic, pyroptotic, and ferroptotic cell death. Mol Cell 84(1):170–179

    Article  CAS  PubMed  Google Scholar 

  59. Li L, Tan H, Zou Z, Gong J, Zhou J, Peng N, Su L, Maegele M, Cai D, Gu Z (2020) Preventing necroptosis by scavenging ROS production alleviates heat stress-induced intestinal injury. Int J Hyperthermia 37(1):517–530. https://doi.org/10.1080/02656736.2020.1763483

    Article  CAS  PubMed  Google Scholar 

  60. Li L et al (2019) Ser46 phosphorylation of p53 is an essential event in prolyl-isomerase Pin1-mediated p53-independent apoptosis in response to heat stress. Cell Death Dis 10(2):96

    Article  PubMed  PubMed Central  Google Scholar 

  61. He S et al (2019) Ferulic acid protects against heat stress-induced intestinal epithelial barrier dysfunction in IEC-6 cells via the PI3K/Akt-mediated Nrf2/HO-1 signaling pathway. Int J Hyperthermia 35(1):112–121

    Article  CAS  PubMed  Google Scholar 

  62. Yuan F, Cai J, Wu J, Tang Y, Zhao K, Liang F, Li F, Yang X, He Z, Billiar TR, Wang H, Su L, Lu B (2022) Z-DNA binding protein 1 promotes heatstroke-induced cell death. Science 376(6593):609–615. https://doi.org/10.1126/science.abg5251

    Article  CAS  PubMed  Google Scholar 

  63. Wang R et al (2020) Gut stem cell necroptosis by genome instability triggers bowel inflammation. Nature 580(7803):386–390

    Article  CAS  PubMed  Google Scholar 

  64. Zhang T et al (2020) Influenza virus Z-RNAs induce ZBP1-mediated necroptosis. Cell 180(6):1115-1129 e13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jiao H et al (2020) Z-nucleic-acid sensing triggers ZBP1-dependent necroptosis and inflammation. Nature 580(7803):391–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kuriakose T, Kanneganti TD (2018) ZBP1: innate sensor regulating cell death and inflammation. Trends Immunol 39(2):123–134

    Article  CAS  PubMed  Google Scholar 

  67. Devos M, Tanghe G, Gilbert B, Dierick E, Verheirstraeten M, Nemegeer J, de Reuver R, Lefebvre S, De Munck J, Rehwinkel J, Vandenabeele P, Declercq W, Maelfait J (2020) Sensing of endogenous nucleic acids by ZBP1 induces keratinocyte necroptosis and skin inflammation. J Exp Med 217(7):e20191913

  68. Jiang X, Stockwell BR, Conrad M (2021) Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol 22(4):266–282

    Article  PubMed  PubMed Central  Google Scholar 

  69. Jenkins NL, James SA, Salim A, Sumardy F, Speed TP, Conrad M, Richardson DR, Bush AI, McColl G (2020) Changes in ferrous iron and glutathione promote ferroptosis and frailty in aging Caenorhabditis elegans. Elife 9:e56580

  70. Chen X et al (2021) Broadening horizons: the role of ferroptosis in cancer. Nat Rev Clin Oncol 18(5):280–296

    Article  CAS  PubMed  Google Scholar 

  71. Carneiro BA, El-Deiry WS (2020) Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol 17(7):395–417

    Article  PubMed  PubMed Central  Google Scholar 

  72. **e S et al (2021) Metabolic control by heat stress determining cell fate to ferroptosis for effective cancer therapy. ACS Nano 15(4):7179–7194

    Article  CAS  PubMed  Google Scholar 

  73. Kanno T et al (2021) Acsbg1-dependent mitochondrial fitness is a metabolic checkpoint for tissue T(reg) cell homeostasis. Cell Rep 37(6):109921

    Article  CAS  PubMed  Google Scholar 

  74. Luan Y et al (2023) Serum myoglobin modulates kidney injury via inducing ferroptosis after exertional heatstroke. J Transl Int Med 11(2):178–188

    Article  PubMed  PubMed Central  Google Scholar 

  75. Karki R et al (2021) ADAR1 restricts ZBP1-mediated immune response and PANoptosis to promote tumorigenesis. Cell Rep 37(3):109858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pandian N, Kanneganti TD (2022) PANoptosis: a unique innate immune inflammatory cell death modality. J Immunol 209(9):1625–1633

    Article  CAS  PubMed  Google Scholar 

  77. Zhu P et al (2023) Advances in mechanism and regulation of PANoptosis: Prospects in disease treatment. Front Immunol 14:1120034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kayagaki N et al (2015) Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526(7575):666–671

    Article  CAS  PubMed  Google Scholar 

  79. Shi J et al (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526(7575):660–665

    Article  CAS  PubMed  Google Scholar 

  80. Sun L et al (2012) Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148(1–2):213–227

    Article  CAS  PubMed  Google Scholar 

  81. Chen X et al (2014) Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death. Cell Res 24(1):105–121

    Article  CAS  PubMed  Google Scholar 

  82. Wu C et al (2019) Inflammasome activation triggers blood clotting and host death through pyroptosis. Immunity 50(6):1401-1411 e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yang X et al (2019) Bacterial endotoxin activates the coagulation cascade through gasdermin D-dependent phosphatidylserine exposure. Immunity 51(6):983-996 e6

    Article  CAS  PubMed  Google Scholar 

  84. Zheng M, Kanneganti TD (2020) The regulation of the ZBP1-NLRP3 inflammasome and its implications in pyroptosis, apoptosis, and necroptosis (PANoptosis). Immunol Rev 297(1):26–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zheng M et al (2020) Caspase-6 is a key regulator of innate immunity, inflammasome activation, and host defense. Cell 181(3):674-687 e13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kayagaki N et al (2021) NINJ1 mediates plasma membrane rupture during lytic cell death. Nature 591(7848):131–136

    Article  CAS  PubMed  Google Scholar 

  87. Yamamoto K et al (2020) Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature 581(7806):100–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Green DR (2019) The coming decade of cell death research: five riddles. Cell 177(5):1094–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Liu S et al (2023) Autophagy: Regulator of cell death. Cell Death Dis 14(10):648

    Article  PubMed  PubMed Central  Google Scholar 

  90. Dokladny K, Myers OB, Moseley PL (2015) Heat shock response and autophagy–cooperation and control. Autophagy 11(2):200–213

    Article  PubMed  PubMed Central  Google Scholar 

  91. Glick D, Barth S, Macleod KF (2010) Autophagy: cellular and molecular mechanisms. J Pathol 221(1):3–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hu JM et al (2021) Ethyl pyruvate ameliorates heat stroke-induced multiple organ dysfunction and inflammatory responses by induction of stress proteins and activation of autophagy in rats. Int J Hyperthermia 38(1):862–874

    Article  CAS  PubMed  Google Scholar 

  93. Kuo NC, Huang SY, Yang CY, Shen HH, Lee YM (2020) Involvement of HO-1 and autophagy in the protective effect of magnolol in hepatic steatosis-induced NLRP3 inflammasome activation in vivo and in vitro. Antioxidants (Basel) 9(10):924

  94. Willot Q et al (2006) Exploring the connection between autophagy and heat-stress tolerance in Drosophila melanogaster. Proc Biol Sci 2023(290):20231305

    Google Scholar 

  95. Gohel R et al (2020) Molecular mechanisms of selective autophagy in Drosophila. Int Rev Cell Mol Biol 354:63–105

    Article  CAS  PubMed  Google Scholar 

  96. Zhao F et al (2016) Semen preparation methods and sperm telomere length: density gradient centrifugation versus the swim up procedure. Sci Rep 6:39051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Venn RM et al (1999) Preliminary UK experience of dexmedetomidine, a novel agent for postoperative sedation in the intensive care unit. Anaesthesia 54(12):1136–1142

    Article  CAS  PubMed  Google Scholar 

  98. Li B et al (2015) Anti-inflammatory effects of perioperative dexmedetomidine administered as an adjunct to general anesthesia: a meta-analysis. Sci Rep 5:12342

    Article  PubMed  PubMed Central  Google Scholar 

  99. Zamani MM et al (2016) Survival benefits of dexmedetomidine used for sedating septic patients in intensive care setting: A systematic review. J Crit Care 32:93–100

    Article  CAS  PubMed  Google Scholar 

  100. **a ZN et al (2017) Dexmedetomidine protects against multi-organ dysfunction induced by heatstroke via sustaining the intestinal integrity. Shock 48(2):260–269

    Article  CAS  PubMed  Google Scholar 

  101. Zhang J et al (2015) The effect of dexmedetomidine on inflammatory response of septic rats. BMC Anesthesiol 15:68

    Article  PubMed  PubMed Central  Google Scholar 

  102. Zhang P et al (2017) Dexmedetomidine regulates 6-hydroxydopamine-induced microglial polarization. Neurochem Res 42(5):1524–1532

    Article  CAS  PubMed  Google Scholar 

  103. Li P et al (2021) Modulation of microglial phenotypes by dexmedetomidine through TREM2 reduces neuroinflammation in heatstroke. Sci Rep 11(1):13345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhang Y et al (2017) Dexmedetomidine may upregulate the expression of caveolin-1 in lung tissues of rats with sepsis and improve the short-term outcome. Mol Med Rep 15(2):635–642

    Article  CAS  PubMed  Google Scholar 

  105. Geng Y et al (2019) Dexmedetomidine attenuates acute lung injury induced by heatstroke and improve outcome. Shock 52(5):532–539

    Article  CAS  PubMed  Google Scholar 

  106. Klingensmith NJ, Coopersmith CM (2016) The gut as the motor of multiple organ dysfunction in critical illness. Crit Care Clin 32(2):203–212

    Article  PubMed  PubMed Central  Google Scholar 

  107. Leon LR, Helwig BG (2010) Role of endotoxin and cytokines in the systemic inflammatory response to heat injury. Front Biosci (Schol Ed) 2(3):916–938. https://doi.org/10.2741/s111

    Article  PubMed  Google Scholar 

  108. Chi X et al (2015) Dexmedetomidine ameliorates acute lung injury following orthotopic autologous liver transplantation in rats probably by inhibiting Toll-like receptor 4-nuclear factor kappa B signaling. J Transl Med 13:190

    Article  PubMed  PubMed Central  Google Scholar 

  109. Zhang X et al (2016) Sarcolemmal ATP-sensitive potassium channel protects cardiac myocytes against lipopolysaccharide-induced apoptosis. Int J Mol Med 38(3):758–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kataoka H et al (2017) Structural behavior of the endothelial glycocalyx is associated with pathophysiologic status in septic mice: an integrated approach to analyzing the behavior and function of the glycocalyx using both electron and fluorescence intravital microscopy. Anesth Analg 125(3):874–883

    Article  PubMed  Google Scholar 

  111. Kobayashi K et al (2018) Dexmedetomidine preserves the endothelial glycocalyx and improves survival in a rat heatstroke model. J Anesth 32(6):880–885

    Article  PubMed  Google Scholar 

  112. Kawasaki T et al (2014) Thrombomodulin improved liver injury, coagulopathy, and mortality in an experimental heatstroke model in mice. Anesth Analg 118(5):956–963

    Article  CAS  PubMed  Google Scholar 

  113. Zhang K et al (2022) Mesenchymal stem cell therapy: a potential treatment targeting pathological manifestations of traumatic brain injury. Oxid Med Cell Longev 2022:4645021

    PubMed  PubMed Central  Google Scholar 

  114. Das M et al (2019) Mesenchymal stem cell therapy for the treatment of traumatic brain injury: progress and prospects. Rev Neurosci 30(8):839–855

    Article  PubMed  Google Scholar 

  115. Brooks B, Ebedes D, Usmani A, Gonzales-Portillo JV, Gonzales-Portillo D, Borlongan CV (2022) Mesenchymal stromal cells in ischemic brain injury. Cells 11(6):1013

  116. Ni XX et al (2020) Protective effects of hyperbaric oxygen therapy on brain injury by regulating the phosphorylation of Drp1 through ROS/PKC pathway in heatstroke rats. Cell Mol Neurobiol 40(8):1253–1269

    Article  CAS  PubMed  Google Scholar 

  117. Wu Q et al (2018) Mdivi-1 alleviates blood-brain barrier disruption and cell death in experimental traumatic brain injury by mitigating autophagy dysfunction and mitophagy activation. Int J Biochem Cell Biol 94:44–55

    Article  CAS  PubMed  Google Scholar 

  118. Lin PH et al (2021) Exertional heat stroke on fertility, erectile function, and testicular morphology in male rats. Sci Rep 11(1):3539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Chao CM et al (2023) Myocardial structure and functional alterations in a preclinical model of exertional heat stroke. Life Sci 323:121640

    Article  CAS  PubMed  Google Scholar 

  120. Hsieh KL et al (2024) Hyperbaric oxygen preconditioning normalizes scrotal temperature, sperm quality, testicular structure, and erectile function in adult male rats subjected to exertional heat injury. Mol Cell Endocrinol 584:112175

    Article  CAS  PubMed  Google Scholar 

  121. Luaces JP et al (2023) What do we know about blood-testis barrier? current understanding of its structure and physiology. Front Cell Dev Biol 11:1114769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lian P, Braber S, Garssen J, Wichers HJ, Folkerts G, Fink-Gremmels J, Varasteh S (2020) Beyond heat stress: Intestinal integrity disruption and mechanism-based intervention strategies. Nutrients 12(3):734

  123. Ortega ADSV, Szabó C (2021) Adverse effects of heat stress on the intestinal integrity and function of pigs and the mitigation capacity of dietary antioxidants: A review. Animals (Basel) 11(4):1135

  124. Li ST et al (2018) Ulinastatin attenuates LPS-induced inflammation in mouse macrophage RAW264.7 cells by inhibiting the JNK/NF-kappaB signaling pathway and activating the PI3K/Akt/Nrf2 pathway. Acta Pharmacol Sin 39(8):1294–1304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhang H et al (2016) Preventive effects of ulinastatin on complications related to pancreaticoduodenectomy: A Consort-prospective, randomized, double-blind, placebo-controlled trial. Medicine (Baltimore) 95(24):e3731

    Article  CAS  PubMed  Google Scholar 

  126. Pan Y et al (2017) Ulinastatin ameliorates tissue damage of severe acute pancreatitis through modulating regulatory T cells. J Inflamm (Lond) 14:7

    Article  PubMed  Google Scholar 

  127. Tao Z et al (2017) Effect of ulinastatin, a human urinary protease inhibitor, on heatstroke-induced apoptosis and inflammatory responses in rats. Exp Ther Med 13(1):335–341

    Article  CAS  PubMed  Google Scholar 

  128. Tong Y et al (2014) Ulinastatin preconditioning attenuates inflammatory reaction of hepatic ischemia reperfusion injury in rats via high mobility group box 1(HMGB1) inhibition. Int J Med Sci 11(4):337–343

    Article  PubMed  PubMed Central  Google Scholar 

  129. Na P, Yan G, Zhang S, Tang Y-Q, Qiang W, Yun-song L, Lei S (2015) Effects of ulinastatin on oxidative stress and renal injury in rats with severe heatstroke. Med J Chin PLA 05:354–357 (CNKI:SUN:JFJY.0.2015-05-004)

    Google Scholar 

  130. Zhou G, Xu Q, Liu Y, Wang Z, Su L, Guo X (2015) Protective effects of ulinastatin against acute lung injury induced by heatstroke in mice. Nan Fang Yi Ke Da Xue Xue Bao 35(9):1277–1282 (Chinese)

    CAS  PubMed  Google Scholar 

  131. Kim SK et al (2019) Role of probiotics in human gut microbiome-associated diseases. J Microbiol Biotechnol 29(9):1335–1340

    Article  PubMed  Google Scholar 

  132. Bae JY et al (2018) Effects of Lactobacillus plantarum and Leuconostoc mesenteroides Probiotics on Human Seasonal and Avian Influenza Viruses. J Microbiol Biotechnol 28(6):893–901

    Article  CAS  PubMed  Google Scholar 

  133. Li L et al (2021) Preventive effects of Bacillus licheniformis on heat stroke in rats by sustaining intestinal barrier function and modulating gut microbiota. Front Microbiol 12:630841

    Article  PubMed  PubMed Central  Google Scholar 

  134. Ogden HB, Child RB, Fallowfield JL, Delves SK, Westwood CS, Layden JD (2020) The gastrointestinal exertional heat stroke paradigm: Pathophysiology, assessment, severity, aetiology and nutritional countermeasures. Nutrients 12(2):537

  135. Cai H et al (2023) Remodeling of gut microbiota by probiotics alleviated heat stroke-induced necroptosis in male germ cells. Mol Nutr Food Res 67(18):e2300291

    Article  PubMed  Google Scholar 

  136. Ding N et al (2020) Impairment of spermatogenesis and sperm motility by the high-fat diet-induced dysbiosis of gut microbes. Gut 69(9):1608–1619

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the Medical Science and Technology Projects in Guangdong [A2023269] and Science and Technology Projects in Guangzhou [2024A03J0640].

Author information

Authors and Affiliations

Authors

Contributions

Zixin Wang and Jie Zhu wrote the main manuscript text. Dingshun Zhang prepared Figs. 1, 2 and 3. **ke Lv prepared Tables 1 and 2. Zhifeng Liu and Liang** Wu identified the topic of this review. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Liang** Wu or Zhifeng Liu.

Ethics declarations

Ethic declaration

Not applicable.

Consent for publication

All authors reviewed the manuscript and approved the publication.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zhu, J., Zhang, D. et al. The significant mechanism and treatments of cell death in heatstroke. Apoptosis (2024). https://doi.org/10.1007/s10495-024-01979-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10495-024-01979-w

Keywords

Navigation