Log in

A framework for choosing an appropriate fuzzy set extension in modeling

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Real-world problems contain uncertainties. Fuzzy Set Theory (FST) is a popular approach to model these uncertainties. FST extensions (FSTEs) have been offered for better modeling of the uncertainties having different natures. It is essential to use the most suitable FSTE in modeling to achieve reasonable, reliable, and realistic results. However, FSTEs are preferred without stating a clear reason in most of the studies. This makes the quality and the reliability of the results of these studies questionable. Because, to obtain reliable models, the dynamics of the problem and environment should be well understood, the scenario should be well analyzed, and the assumptions and limitations of FSTE theories should be well known. In this study, a guiding framework for choosing the most suitable FSTE in modeling to obtain reliable, applicable, and efficient results is proposed. The framework consists of two parts: (i) conceptual analysis of the uncertainty types and FSTEs, (ii) a guiding procedure fed by the first step for deciding the most suitable FSTE. The procedure is illustrated by multiple numerical examples to make its benefits clear. Conceptual analysis and numerical examples show that some FSTEs have some advantages over the others for specific scenarios and problem types. For example, NS is more suitable than PFS for modeling the problems other than Multi-Criteria Decision-Making (MCDM). Another contribution of this study is showing that it is very important to choose the simplest possible FSTE to obtain reliable and applicable models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. Kahraman C, Öztayşi B, Onar SÇ (2016) A comprehensive literature review of 50 years of fuzzy set theory. Int J Comput Intell Syst 9:3–24

  2. Pelissari R, Oliveira MC, Abackerli AJ, Ben-Amor S, Assumpção MRP (2021) Techniques to model uncertain input data of multi-criteria decision-making problems: a literature review. Int Trans Oper Res 28(2):523–559

  3. Padrón-Tristán JF, Cruz-Reyes L, Espín-Andrade RA, Llorente-Peralta CE (2021) A brief review of performance and interpretability in fuzzy inference systems. In: Zapata-Cortes JA, Alor-Hernández G, Sánchez-Ramírez C, García-Alcaraz JL (eds) New Perspectives on Enterprise Decision-Making Applying Artificial Intelligence Techniques. Studies in Computational Intelligence, vol 966. Springer, Cham, pp 237–266. https://doi.org/10.1007/978-3-030-71115-3_11

  4. Kaya İ, Çolak M, Terzi F (2019) A comprehensive review of fuzzy multi criteria decision making methodologies for energy policy making. Energy Strateg Rev 24:207–228

    Article  Google Scholar 

  5. Mardani A, Nilashi M, Zavadskas EK, Awang SR, Zare H, Jamal NM (2018) Decision making methods based on fuzzy aggregation operators: three decades review from 1986 to 2017. Int J Inf Technol Decis Mak 17(2):391–466

    Article  Google Scholar 

  6. Salih MM, Zaidan BB, Zaidan AA, Ahmed MA (2019) Survey on fuzzy TOPSIS state-of-the-art between 2007 and 2017. Comput Oper Res 104:207–227

    Article  MathSciNet  MATH  Google Scholar 

  7. Kahraman C, Oztaysi B, Otay I, Onar SC (2020) Extensions of ordinary fuzzy sets: a comparative literature review. In: Kahraman C, Cevik Onar S, Oztaysi B, Sari I, Cebi S, Tolga A (eds) Intelligent and Fuzzy Techniques: Smart and Innovative Solutions. INFUS 2020. Advances in Intelligent Systems and Computing, vol 1197. Springer, Cham, pp 1655–1665. https://doi.org/10.1007/978-3-030-51156-2_193

  8. Sevastjanov P, Dymova L (2021) On the neutrosophic, pythagorean and some other novel fuzzy sets theories used in decision making: invitation to discuss. Entropy 23:1485

    Article  MathSciNet  Google Scholar 

  9. Pękala B (2019) Introduction to fuzzy sets. In: Uncertainty Data in Interval-Valued Fuzzy Set Theory: Properties, Algorithms and Applications 367:1–20. Springer, Cham. https://doi.org/10.1007/978-3-319-93910-0_1

  10. Gulistan M, Yaqoob N, Elmoasry A, Alebraheem J (2021) Complex bipolar fuzzy sets: an application in a transport’s company. J Intell Fuzzy Syst 40(3):3981–3997

    Article  Google Scholar 

  11. Akram M, Adeel A (2019) Novel TOPSIS method for group decision-making based on hesitant m-polar fuzzy model. J Intell Fuzzy Syst 37(6):8077–8096

    Article  Google Scholar 

  12. Işık G, Kaya İ (2022) Design of single and double acceptance sampling plans based on interval type-2 fuzzy sets. J Intell Fuzzy Syst 42(6):5361–5373

    Article  Google Scholar 

  13. Garg H, Kumar K (2019) Linguistic interval-valued atanassov intuitionistic fuzzy sets and their applications to group decision making problems. IEEE Trans Fuzzy Syst 12(2302–2311):27

    Google Scholar 

  14. Fei L, Feng Y, Liu L, Mao W (2019) On intuitionistic fuzzy decision-making using soft likelihood functions. Int J Intell Syst 34(9):2225–2242

    Article  Google Scholar 

  15. Li D, Zeng W (2018) Distance measure of Pythagorean fuzzy sets. Int J Intell Syst 33(2):348–361

    Article  MathSciNet  Google Scholar 

  16. Peng X, Liu L (2019) Information measures for q-rung orthopair fuzzy sets. Int J Intell Syst 34(8):1795–1834

    Article  Google Scholar 

  17. Senapati T, Yager RR (2020) Fermatean fuzzy sets. J Ambient Intell Humaniz Comput 11:663–674

    Article  Google Scholar 

  18. Das S, Roy BK, Kar MB, Kar S, Pamučar D (2020) Neutrosophic fuzzy set and its application in decision making. J Ambient Intell Humaniz Comput 11(11):5017–5029

    Article  Google Scholar 

  19. Wang R, Li Y (2018) Picture hesitant fuzzy set and its application to multiple criteria decision-making. Symmetry 10(7):295

    Article  Google Scholar 

  20. Mahmood T, Ullah K, Khan Q, Jan N (2018) An approach toward decision-making and medical diagnosis problems using the concept of spherical fuzzy sets. Neural Comput & Applic 31:7043–7053

    Google Scholar 

  21. Ullah K, Mahmood T, Jan N (2018) Similarity measures for T-spherical fuzzy sets with applications in pattern recognition. Symmetry 10(6):193

    Article  MATH  Google Scholar 

  22. Riesgo Á, Alonso P, Díaz I, Montes S (2018) Basic operations for fuzzy multisets. Int J Approx Reason 101:107–118

    Article  MathSciNet  MATH  Google Scholar 

  23. Xu Z, Zhang S (2019) An overview on the applications of the hesitant fuzzy sets in group decision-making: theory, support and methods. Front Eng Manag 6(2):163–182

    Article  Google Scholar 

  24. Gou X, Xu Z, Herrera F (2018) Consensus reaching process for large-scale group decision making with double hierarchy hesitant fuzzy linguistic preference relations. Knowl-Based Syst 157:20–33

    Article  Google Scholar 

  25. E Silva PCDL, Junior CAS, Alves MA, Silva R, Cohen MW, Guimarães FG (2020) Forecasting in non-stationary environments with fuzzy time series. Appl Soft Comput 97:106825

    Article  Google Scholar 

  26. Kang B, Deng Y, Hewage K, Sadiq R (2018) A method of measuring uncertainty for z-number. IEEE Trans Fuzzy Syst 27(4):731–738

    Article  Google Scholar 

  27. Princy R, Mohana K (2019) Spherical bipolar fuzzy sets and its application in multi criteria decision making problem. J New Theory 32:58–70

    Google Scholar 

  28. Riaz M, Hamid MT, Afzal D, Pamucar D, Chu YM (2021) Multi-criteria decision making in robotic agri-farming with q-rung orthopair m-polar fuzzy sets. PLoS One 16(2):e0246485

    Article  Google Scholar 

  29. Al-Quran A (2021) A new multi attribute decision making method based on the t-spherical hesitant fuzzy sets. IEEE Access 9:156200–156210

    Article  Google Scholar 

  30. Hashim RM, Gulistan M, Rehman I, Hassan N, Nasruddin AM (2020) Neutrosophic bipolar fuzzy set and its application in medicines preparations. Neutrosophic Sets Syst 31:86–100

    Google Scholar 

  31. Naeem K, Riaz M, Afzal D (2019) Pythagorean m-polar fuzzy sets and TOPSIS method for the selection of advertisement mode. J Intell Fuzzy Syst 37(6):8441–8458

    Article  Google Scholar 

  32. Zheng Y, Xu Z, Wang X (2021) The fusion of deep learning and fuzzy systems: a state-of-the-art survey. IEEE Trans Fuzzy Syst 30(8):2783–2799. https://doi.org/10.1109/TFUZZ.2021.3062899

  33. Boltürk E (2022) Fuzzy sets theory and applications in engineering economy: a literature review. J Intell Fuzzy Syst 42(1):37–46

    Article  Google Scholar 

  34. Liu Y, Eckert CM, Earl C (2020) A review of fuzzy AHP methods for decision-making with subjective judgements. Expert Syst Appl 161:113738

    Article  Google Scholar 

  35. Kahraman C, Onar SC, Öztayşi B, Şeker Ş, Karaşan A (2020) Integration of fuzzy AHP with other fuzzy multicriteria methods: a state of the art survey. J Mult-Valued Logic Soft Comput 35(1–2):61–92

  36. Mathew M, Chakrabortty RK, Ryan MJ (2020) A novel approach integrating AHP and TOPSIS under spherical fuzzy sets for advanced manufacturing system selection. Eng Appl Artif Intell 96:103988

    Article  Google Scholar 

  37. Simic V, Karagoz S, Deveci M, Aydin N (2021) Picture fuzzy extension of the CODAS method for multi-criteria vehicle shredding facility location. Expert Syst Appl 175:114644

    Article  Google Scholar 

  38. Krishankumar R, Ravichandran KS, Liu P, Kar S, Gandomi AH (2021) A decision framework under probabilistic hesitant fuzzy environment with probability estimation for multi-criteria decision making. Neural Comput & Applic 33(14):8417–8433

    Article  Google Scholar 

  39. Wang X, Wang H, Xu Z, Ren Z (2022) Green supplier selection based on probabilistic dual hesitant fuzzy sets: a process integrating best worst method and superiority and inferiority ranking. Appl Intell 52(7):8279–8301

    Article  Google Scholar 

  40. Peng X, Luo Z (2021) A review of q-rung orthopair fuzzy information: bibliometrics and future directions. Artif Intell Rev 54(5):3361–3430

    Article  Google Scholar 

  41. Ozceylan E, Ozkan B, Kabak M, Dagdeviren M (2022) A state-of-the-art survey on spherical fuzzy sets. J Intell Fuzzy Syst 42(1):195–212

    Article  Google Scholar 

  42. Peng X, Selvachandran G (2019) Pythagorean fuzzy set: state of the art and future directions. Artif Intell Rev 52(3):1873–1927

    Article  Google Scholar 

  43. Liao H, Xu Z, Herrera-Viedma E, Herrera F (2018) Hesitant fuzzy linguistic term set and its application in decision making: a state-of-the-art survey. Int J Fuzzy Syst 20(7):2084–2110

    Article  MathSciNet  Google Scholar 

  44. Luo X, Li W, Zhao W (2018) Intuitive distance for intuitionistic fuzzy sets with applications in pattern recognition. Appl Intell 48(9):2792–2808

    Article  Google Scholar 

  45. Peng X, Garg H (2019) Multiparametric similarity measures on pythagorean fuzzy sets with applications to pattern recognition. Appl Intell 49(12):4058–4096

    Article  Google Scholar 

  46. Gou X, Xu Z (2021) Double hierarchy linguistic term set and its extensions: the state-of-the-art survey. Int J Intell Syst 36(2):832–865

    Article  Google Scholar 

  47. Xue Y, Deng Y (2021) Decision making under measure-based granular uncertainty with intuitionistic fuzzy sets. Appl Intell 51(8):6224–6233

    Article  Google Scholar 

  48. Pan Y, Zhang L, Li Z, Ding L (2019) Improved fuzzy Bayesian network-based risk analysis with interval-valued fuzzy sets and D–S evidence theory. IEEE Trans Fuzzy Syst 28(9):2063–2077

    Article  Google Scholar 

  49. Singh PK (2018) M-polar fuzzy graph representation of concept lattice. Eng Appl Artif Intell 67:52–62

    Article  Google Scholar 

  50. Liu Y, Jiang W (2020) A new distance measure of interval-valued intuitionistic fuzzy sets and its application in decision making. Soft Comput 24(9):6987–7003

    Article  MATH  Google Scholar 

  51. Işık G (2022) A new method for conversion between pythagorean fuzzy sets and intuitionistic fuzzy sets. Sigma J Eng Nat Sci 40(1):188–195

    Google Scholar 

  52. Rani D, Garg H (2019) Some modified results of the subtraction and division operations on interval neutrosophic sets. J Exp Theor Artif Intell 31(4):677–698

    Article  Google Scholar 

  53. Zhou W, Chen J, Xu Z, Meng S (2018) Hesitant fuzzy preference envelopment analysis and alternative improvement. Inf Sci 465:105–117

    Article  Google Scholar 

  54. Jana C, Pal M (2019) A robust single-valued neutrosophic soft aggregation operators in multi-criteria decision making. Symmetry 11(1):110

    Article  Google Scholar 

  55. Nancy, Garg H (2016) An improved score function for ranking neutrosophic sets and its application to decision-making process. Int J Uncertain Quantif 6(5):377–385

    Article  Google Scholar 

  56. Singh A, Bhat SA (2021) A novel score and accuracy function for neutrosophic sets and their real-world applications to multi-criteria decision-making proces. Neutrosophic Sets Syst 41:168–197

    Google Scholar 

  57. Jafari R, Yu W (2017) Fuzzy modeling for uncertainty nonlinear systems with fuzzy equations. Math Probl Eng 2017:1–10. https://doi.org/10.1155/2017/8594738

  58. Işık G, Kaya İ (2022) A new integrated methodology for constructing linguistic pythagorean fuzzy statements for decision making problems. J Intell Fuzzy Syst 43(4):4883–4894

    Article  Google Scholar 

  59. Işık G, Kaya İ (2021) Design and analysis of acceptance sampling plans based on intuitionistic fuzzy linguistic terms. Iran J Fuzzy Syst 18(6):101–118

    MATH  Google Scholar 

  60. Kaya İ, Işık G, Karaşan A, Gündoğdu FK, Baraçlı H (2022) Evaluation of potential locations for hydropower plants by using a fuzzy based methodology consists of two-dimensional uncertain linguistic variables. J Inf Sci Eng 38(5):923–935. https://doi.org/10.6688/JISE.202209_38(5).0003

  61. Senapati T, Yager RR (2019) Fermatean fuzzy weighted averaging/geometric operators and its application in multi-criteria decision-making methods. Eng Appl Artif Intell 85:112–121

    Article  Google Scholar 

  62. Rahman K, Ayub S, Abdullah S (2021) Generalized intuitionistic fuzzy aggregation operators based on confidence levels for group decision making. Granul Comput 6(4):867–886

    Article  Google Scholar 

  63. Şahin R, Küçük A (2014) Generalised neutrosophic soft set and its integration to decision making problem. Appl Math Inf Sci 8(6):2751–2759

    Article  Google Scholar 

  64. Kutlu Gündoğdu F, Kahraman C (2019) Spherical fuzzy sets and spherical fuzzy TOPSIS method. J Intell Fuzzy Syst 36(1):337–352

    Article  MATH  Google Scholar 

  65. Cuong BC (2014) Picture fuzzy sets. J Comput Sci Cybern 30(4):409–420

    Google Scholar 

  66. Ye J (2014) A multicriteria decision-making method using aggregation operators for simplified neutrosophic sets. J Intell Fuzzy Syst 26(5):2459–2466

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gürkan Işık.

Ethics declarations

Conflict of interest

The author declares that he has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1. Aggregation Operators and Score Functions

Appendix 1. Aggregation Operators and Score Functions

The aggregation operators and the score functions used in numerical example (Section 5.2) are presented in the following subsections. Traditional FSs can be ranked according to their membership degree. FSTEs be ranked according to their score and accuracy function values. The FSTE having the biggest score value is a bigger FSTE. If the score value for two FSTEs are equal, then the FSTE having bigger accuracy value is the bigger one.

1.1 Traditional fuzzy set

Definition 15

Let\( {\overset{\sim }{A}}_j=\left\langle {\mu}_j\right\rangle \) be a traditional FS, \( {w}_j\in \left[0,1\right],{\sum}_{j=1,\dots, n}{w}_j=1 \) be weight for \( {\overset{\sim }{A}}_j \). Weighted averaging operator for IFSs is defined as in Eq. (27) [14]:

$$ WA={\sum}_{j=1}^n{w}_j{\mu}_j $$
(27)

1.2 Intuitionistic fuzzy set

Definition 16

Let\( {\overset{\sim }{A}}_j=\left\langle {\mu}_j,{\vartheta}_j\right\rangle \) be IFSs, \( {w}_j\in \left[0,1\right],\sum \limits_{j=1,\dots, n}{w}_j=1 \) be weight for \( {\overset{\sim }{A}}_j \). Weighted averaging operator for IFSs is defined as in Eq. (28) [14]:

$$ IWA={\sum}_{j=1}^n{w}_j{\overset{\sim }{A}}_j=\left\langle {\sum}_{j=1}^n{w}_j{\mu}_j,\kern0.5em {\sum}_{j=1}^n{w}_j{\vartheta}_j\right\rangle $$
(28)

Definition 17

Let\( \overset{\sim }{A}=\left\langle \mu, \vartheta \right\rangle \) be an IFS. Score \( \left({S}_{\overset{\sim }{A}}\right) \)and accuracy \( \left({H}_{\overset{\sim }{A}}\right) \)values can be calculated as shown in Eqs. (2930) [62]:

$$ {S}_{\overset{\sim }{A}}=\upmu -\vartheta $$
(29)
$$ {H}_{\overset{\sim }{A}}=\mu +\vartheta $$
(30)

1.3 Pythagorean fuzzy set

Definition 18

Let\( {\overset{\sim }{A}}_j=\left\langle {\mu}_j,{\vartheta}_j\right\rangle \) be PFSs, \( {w}_j\in \left[0,1\right],\sum \limits_{j=1,\dots, n}{w}_j=1 \) be weight for \( {\overset{\sim }{A}}_j \). Weighted averaging operator for PFSs is defined as in Eq. (31) [42]:

$$ {\displaystyle \begin{array}{c} PWA={\sum}_{j=1}^n{w}_j{\overset{\sim }{A}}_j\\ {}=\left\langle \sqrt{1-{\prod}_{j=1}^n\left[{\left(1-{\mu}_j^2\right)}^{w_j}\right]},\right.\ \left.{\prod}_{j=1}^n\left[{\vartheta}_j^{w_j}\right]\right\rangle \kern1em \end{array}} $$
(31)

Definition 19

Let\( \overset{\sim }{A}=\left\langle \mu, \vartheta \right\rangle \) be an PFS. Score \( \left({S}_{\overset{\sim }{A}}\right) \)and accuracy \( \left({H}_{\overset{\sim }{A}}\right) \)values can be calculated as shown in Eqs. (3233) [15]:

$$ {S}_{\overset{\sim }{A}}={\mu}^2-{\vartheta}^2 $$
(32)
$$ {H}_{\overset{\sim }{A}}={\mu}^2+{\vartheta}^2 $$
(33)

1.4 Farmatean fuzzy set

Definition 20

Let\( {\overset{\sim }{A}}_j=\left\langle {\mu}_j,{\vartheta}_j\right\rangle \) be FFSs, \( {w}_j\in \left[0,1\right],{\sum}_{j=1,\dots, n}{w}_j=1 \) be weight for \( {\overset{\sim }{A}}_j \). Weighted averaging operator for FFSs is defined as in Eq. (34) [61]:

$$ {\displaystyle \begin{array}{c}F\mathrm{W}A={\sum}_{j=1}^n{w}_j{\overset{\sim }{A}}_j\\ {}=\left\langle \sqrt[3]{1-{\prod}_{j=1}^n\left[{\left(1-{\mu}_j^3\right)}^{w_j}\right]},\right.\ \left.{\prod}_{j=1}^n\left[{\vartheta}_j^{w_j}\right]\right\rangle \kern1.75em \end{array}} $$
(34)

Definition 21

Let\( \overset{\sim }{A}=\left\langle \mu, \vartheta \right\rangle \) be an FFS. Score \( \left({S}_{\overset{\sim }{A}}\right) \)and accuracy \( \left({H}_{\overset{\sim }{A}}\right) \)values can be calculated as shown in Eqs. (3536) [61]:

$$ {S}_{\overset{\sim }{A}}={\mu}^3-{\vartheta}^3 $$
(35)
$$ {S}_{\overset{\sim }{A}}={\mu}^3+{\vartheta}^3 $$
(36)

1.5 Picture fuzzy set

Definition 25

Let\( {\overset{\sim }{A}}_{j=1,2}=\left\langle {\mu}_j,{\vartheta}_j,{\eta}_j\right\rangle \) and be two PiFSs. PiFSs are ordered by using the ranking rule presented in Eq. (37) [65]:

$$ {\displaystyle \begin{array}{c} if\kern0.5em {h}_1\left({\overset{\sim }{A}}_1\right)\ge {h}_1\left({\overset{\sim }{A}}_2\right)\Rightarrow {\overset{\sim }{A}}_1\ge {\overset{\sim }{A}}_2\\ {} if\ {h}_1\left({\overset{\sim }{A}}_1\right)={h}_1\left({\overset{\sim }{A}}_2\right)\\ {}\begin{array}{c} and\ {h}_2\left({\overset{\sim }{A}}_1\right)\ge {h}_2\left({\overset{\sim }{A}}_2\right)\Rightarrow {\overset{\sim }{A}}_1\ge {\overset{\sim }{A}}_2\\ {} if\ {h}_1\left({\overset{\sim }{A}}_1\right)={h}_1\left({\overset{\sim }{A}}_2\right)\ and\ {h}_2\left({\overset{\sim }{A}}_1\right)={h}_2\left({\overset{\sim }{A}}_2\right)\\ {} and\ {h}_3\left({\overset{\sim }{A}}_1\right)\ge {h}_3\left({\overset{\sim }{A}}_2\right)\Rightarrow {\overset{\sim }{A}}_1\ge {\overset{\sim }{A}}_2\end{array}\end{array}} $$
(37)

where \( {h}_1\left({\overset{\sim }{A}}_j\right)={\mu}_j \), \( {h}_2\left({\overset{\sim }{A}}_j\right)={\eta}_j \), \( {h}_3\left({\overset{\sim }{A}}_j\right)={\mu}_j+{\eta}_j-{\vartheta}_j \).

1.6 Spherical fuzzy set

Definition 26

Let\( \overset{\sim }{A}=\left\langle \mu, \vartheta, \eta \right\rangle \) and be an SFS. Score \( \left({S}_{\overset{\sim }{A}}\right) \)and accuracy \( \left({H}_{\overset{\sim }{A}}\right) \)values can be calculated as shown in Eqs. (3839) [64]:

$$ {S}_{\overset{\sim }{A}}={\left(\mu -\eta \right)}^2-{\left(\vartheta -\eta \right)}^2 $$
(38)
$$ {H}_{\overset{\sim }{A}}={\mu}^2+{\vartheta}^2+{\eta}^2 $$
(39)

1.7 Neutrosophic set

Definition 22

Let\( {\overset{\sim }{\overset{\cdots }{A}}}_1=\left\langle {t}_1,{i}_1,{f}_1\right\rangle \) and \( {\overset{\sim }{\overset{\cdots }{A}}}_2=\left\langle {t}_2,{i}_2,{f}_2\right\rangle \) be two NSs, and w1 ∈ [0, 1], w2 ∈ [0, 1], w1 + w2 = 1 be scalar weights. Additional operating between two NSs is defined as in Eq. (40) [66]:

$$ {\displaystyle \begin{array}{c}{w}_1{\overset{\sim }{\overset{\cdots }{A}}}_1\oplus {w}_2{\overset{\sim }{\overset{\cdots }{A}}}_2=\left\langle 1-{\left(1-{t}_1\right)}^{w_1}\times {\left(1-{t}_2\right)}^{w_2},\right.\ \\ {}1-{\left(1-{i}_1\right)}^{w_1}\times {\left(1-{i}_2\right)}^{w_2},\\ {}\left.1-{\left(1-{f}_1\right)}^{w_1}\times {\left(1-{f}_2\right)}^{w_2}\right\rangle \kern2.75em \end{array}} $$
(40)

Definition 23

Let\( {\overset{\sim }{\overset{\cdots }{A}}}_j=\left\langle {t}_j,{i}_j,{f}_j\right\rangle \) be an NS, \( {w}_j\in \left[0,1\right],{\sum}_{j=1,\dots, n}{w}_j=1 \) be weight for \( {\overset{\sim }{\overset{\cdots }{A}}}_j \). Weighted averaging operator for NSs is defined as in Eq. (41) [66]:

$$ {\displaystyle \begin{array}{c} NWA={\sum}_{j=1}^n{w}_j{\overset{\sim }{\overset{\cdots }{A}}}_j=\left\langle 1-{\prod}_{j=1}^n{\left(1-{t}_j\right)}^{w_j},\right.\\ {}1-{\prod}_{j=1}^n{\left(1-{i}_j\right)}^{w_j},\\ {}\left.1-{\prod}_{j=1}^n{\left(1-{f}_j\right)}^{w_j}\right\rangle \end{array}} $$
(41)

Definition 24

Let\( \overset{\sim }{\overset{\cdots }{A}}=\left\langle t,i,f\right\rangle \) be a NS. Score (\( {S}_{\overset{\sim }{\overset{\cdots }{A}}}\Big) \)and accuracy \( \left({H}_{\overset{\sim }{\overset{\dddot{}}{A}}}\right) \) values can be calculated as shown in Eqs. (4243) [63]:

$$ {S}_{\overset{\sim }{\overset{\cdots }{A}}}=\frac{1+\left(t-2i-f\right)}{2} $$
(42)
$$ {H}_{\overset{\sim }{\overset{\cdots }{A}}}=t-i\times \left(1-t\right)-f\times \left(1-i\right) $$
(43)

NSs are ranked based on the score values. The NS having bigger score value is agreed as a bigger NS. There are several score functions available in the literature. Some examples are presented below:

Score and accuracy functions proposed by Nancy & Garg [55] is defined as in Eqs. (4445):

$$ {S}_{\overset{\sim }{\overset{\cdots }{A}}}=\frac{1+\left(t-2i-f\right)\times \left(2-t-f\right)}{2} $$
(44)
$$ {H}_{\overset{\sim }{\overset{\cdots }{A}}}=t-2i-f $$
(45)

Score and accuracy functions proposed by Singh & Bhat [56] is defined as in Eqs. (4647):

$$ {S}_{\overset{\sim }{\overset{\cdots }{A}}}=\frac{1+\left(t-2i-f\right)}{2\times \left(2-t-f\right)} $$
(46)
$$ {H}_{\overset{\sim }{\overset{\cdots }{A}}}=t-i-2f $$
(47)

The available score functions are not limited with the presented ones. The score functions may yield different results in ranking operations. Appendix Table 12 shows the ranking results of the mentioned score functions for the numerical example presented in Section 5.2.

Table 12 Ranking results for various score functions for the numerical example presented in section 5.2

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Işık, G. A framework for choosing an appropriate fuzzy set extension in modeling. Appl Intell 53, 14345–14370 (2023). https://doi.org/10.1007/s10489-022-04244-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-022-04244-2

Keywords

Navigation