Log in

Tunable low frequency band gaps and sound transmission loss of a lever-type metamaterial plate

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

A novel metamaterial plate with subwavelength lever-type resonators is proposed to obtain low frequency broadband band gaps and good sound insulation performance. The band structure is theoretically derived, and the validity of the theoretical method is verified by the finite element method. The formation mechanisms of the band gaps are illustrated by the analysis of the effective dynamic mass density and group velocity. The effect of the lever ratio on the band gaps is analyzed. The results indicate that as the lever ratio increases, the first band gap shifts to lower frequencies, while the bandwidth is widened. Moreover, the sound insulation performance of the proposed metamaterial plate is evaluated via examining the sound transmission loss (STL). Compared with the metamaterial plates without lever accessories, the proposed metamaterial plates with a suitable lever ratio have better sound insulation performance at low frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LIU, Z., ZHANG, X., MAO, Y., ZHU, Y. Y., YANG, Z., CHAN, C. T., and SHENG, P. Locally resonant sonic materials. Science, 289, 1734–1736 (2000)

    Article  Google Scholar 

  2. FANG, N., XI, D., XU, J., AMBATI, M., SRITURAVANICH, W., SUN, C., and ZHANG, X. Ultrasonic metamaterials with negative modulus. Nature Materials, 5, 452–456 (2006)

    Article  Google Scholar 

  3. SHENG, P., MEI, J., LIU, Z., and WEN, W. Dynamic mass density and acoustic metamaterials. Physica B: Condensed Matter, 394, 256–261 (2007)

    Article  Google Scholar 

  4. CHEN, Y. Y., BARNHART, M. V., CHEN, J. K., HU, G. K., SUN, C. T., and HUANG, G. L. Dissipative elastic metamaterials for broadband wave mitigation at subwavelength scale. Composite Structures, 136, 358–371 (2016)

    Article  Google Scholar 

  5. PENG, H. and PAI, P. F. Acoustic metamaterial plates for elastic wave absorption and structural vibration suppression. International Journal of Mechanical Sciences, 89, 350–361 (2014)

    Article  Google Scholar 

  6. ZHAO, P. C., ZHANG, K., ZHAO, C., and DENG, Z. C. Multi-resonator coupled metamaterials for broadband vibration suppression. Applied Mathematics and Mechanics (English Edition), 42(1), 53–64 (2021) https://doi.org/10.1007/s10483-021-2684-8

    Article  MathSciNet  Google Scholar 

  7. DENG, J., GUASCH, O., MAXIT, L., and GAO, N. A metamaterial consisting of an acoustic black hole plate with local resonators for broadband vibration reduction. Journal of Sound and Vibration, 526, 116803 (2022)

    Article  Google Scholar 

  8. JANG, J. Y., PARK, C. S., and SONG, K. Lightweight soundproofing membrane acoustic metamaterial for broadband sound insulation. Mechanical Systems and Signal Processing, 178, 109270 (2022)

    Article  Google Scholar 

  9. ZHANG, H., WEN, J., XIAO, Y., WANG, G., and WEN, X. Sound transmission loss of metamaterial thin plates with periodic subwavelength arrays of shunted piezoelectric patches. Journal of Sound and Vibration, 343, 104–120 (2015)

    Article  Google Scholar 

  10. TRAINITI, G., XIA, Y., MARCONI, J., CAZZULANI, G., ERTURK, A., and RUZZENE, M. Time-periodic stiffness modulation in elastic metamaterials for selective wave filtering: theory and experiment. Physical Review Letters, 122, 124301 (2019)

    Article  Google Scholar 

  11. MA, K. J., TAN, T., LIU, F. R., ZHAO, L. C., LIAO, W. H., and ZHANG, W. M. Acoustic energy harvesting enhanced by locally resonant metamaterials. Smart Materials and Structures, 29, 075025 (2020)

    Article  Google Scholar 

  12. OUDICH, M. and LI, Y. Tunable sub-wavelength acoustic energy harvesting with a metamaterial plate. Journal of Physics D: Applied Physics, 50, 315104 (2017)

    Article  Google Scholar 

  13. FAN, H., XIA, B., TONG, L., ZHENG, S., and YU, D. Elastic higher-order topological insulator with topologically protected corner states. Physical Review Letters, 122, 204301 (2019)

    Article  Google Scholar 

  14. NASSAR, H., CHEN, H., NORRIS, A. N., HABERMAN, M. R., and HUANG, G. L. Non-reciprocal wave propagation in modulated elastic metamaterials. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 473, 20170188 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. HUANG, H. H. and SUN, C. T. Anomalous wave propagation in a one-dimensional acoustic metamaterial having simultaneously negative mass density and Young’s modulus. The Journal of the Acoustical Society of America, 132, 2887–2895 (2012)

    Article  Google Scholar 

  16. WANG, X. Dynamic behaviour of a metamaterial system with negative mass and modulus. International Journal of Solids and Structures, 51, 1534–1541 (2014)

    Article  Google Scholar 

  17. WANG, Z. Y., MA, Z. Y., GUO, X. M., and ZHANG, D. S. A new tunable elastic metamaterial structure for manipulating band gaps/wave propagation. Applied Mathematics and Mechanics (English Edition), 42(11), 1543–1554 (2021) https://doi.org/10.1007/s10483-021-2787-8

    Article  MathSciNet  Google Scholar 

  18. WANG, J., ZHOU, W. J., HUANG, Y., LYU, C. F., CHEN, W. Q., and ZHU, W. Q. Controllable wave propagation in a weakly nonlinear monoatomic lattice chain with nonlocal interaction and active control. Applied Mathematics and Mechanics (English Edition), 39(8), 1059–1070 (2018) https://doi.org/10.1007/s10483-018-2360-6

    Article  MathSciNet  MATH  Google Scholar 

  19. WANG, K., ZHOU, J., OUYANG, H., CHENG, L., and XU, D. A semi-active metamaterial beam with electromagnetic quasi-zero-stiffness resonators for ultralow-frequency band gap tuning. International Journal of Mechanical Sciences, 176, 105548 (2020)

    Article  Google Scholar 

  20. ZHANG, Y., FAN, X., LI, J., LI, F., YU, G., ZHANG, R., and YUAN, K. Low-frequency vibration insulation performance of the pyramidal lattice sandwich metamaterial beam. Composite Structures, 278, 114719 (2021)

    Article  Google Scholar 

  21. CAI, C., ZHOU, J., WANG, K., PAN, H., TAN, D., XU, D., and WEN, G. Flexural wave attenuation by metamaterial beam with compliant quasi-zero-stiffness resonators. Mechanical Systems and Signal Processing, 174, 109119 (2022)

    Article  Google Scholar 

  22. ZHU, R., LIU, X. N., HU, G. K., SUN, C. T., and HUANG, G. L. A chiral elastic metamaterial beam for broadband vibration suppression. Journal of Sound and Vibration, 333, 2759–2773 (2014)

    Article  Google Scholar 

  23. THOMES, R. L., BELI, D., and JUNIOR, C. D. M. Space-time wave localization in electromechanical metamaterial beams with programmable defects. Mechanical Systems and Signal Processing, 167, 108550 (2022)

    Article  Google Scholar 

  24. XIAO, Y., WEN, J., and WEN, X. Flexural wave band gaps in locally resonant thin plates with periodically attached spring-mass resonators. Journal of Physics D: Applied Physics, 45, 195401 (2012)

    Article  Google Scholar 

  25. PENG, H., PAI, P. F., and DENG, H. Acoustic multi-stopband metamaterial plates design for broadband elastic wave absorption and vibration suppression. International Journal of Mechanical Sciences, 103, 104–114 (2015)

    Article  Google Scholar 

  26. ZOUARI, S., BROCAIL, J., and GENEVAUX, J. M. Flexural wave band gaps in metamaterial plates: a numerical and experimental study from infinite to finite models. Journal of Sound and Vibration, 435, 246–263 (2018)

    Article  Google Scholar 

  27. MIRANDA, E. J. P., JR, NOBREGA, E. D., FERREIRA, A. H. R., and DOS SANTOS, J. M. C. Flexural wave band gaps in a multi-resonator elastic metamaterial plate using Kirchhoff-Love theory. Mechanical Systems and Signal Processing, 116, 480–504 (2019)

    Article  Google Scholar 

  28. WANG, T., SHENG, M. P., GUO, Z. W., and QIN, Q. H. Flexural wave suppression by an acoustic metamaterial plate. Applied Acoustics, 114, 118–124 (2016)

    Article  Google Scholar 

  29. WANG, K., ZHOU, J., CAI, C., XU, D., and OUYANG, H. Mathematical modeling and analysis of a meta-plate for very low-frequency band gap. Applied Mathematical Modelling, 73, 581–597 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. WANG, Q., LI, J., ZHANG, Y., XUE, Y., and LI, F. Bandgap properties in metamaterial sandwich plate with periodically embedded plate-type resonators. Mechanical Systems and Signal Processing, 151, 107375 (2021)

    Article  Google Scholar 

  31. FANG, X., CHUANG, K. C., JIN, X. L., WANG, D. F., and HUANG, Z. L. An inertant elastic metamaterial plate with extra wide low-frequency flexural band gaps. Journal of Applied Mechanics, 88, 2 (2021)

    Article  Google Scholar 

  32. CHEN, D., ZI, H., LI, Y., and LI, X. Low frequency ship vibration isolation using the band gap concept of sandwich plate-type elastic metastructures. Ocean Engineering, 235, 109460 (2021)

    Article  Google Scholar 

  33. RUSSILLO, A. F., FAILLA, G., and ALOTTA, G. Ultra-wide low-frequency band gap in locally-resonant plates with tunable inerter-based resonators. Applied Mathematical Modelling, 106, 682–695 (2022)

    Article  MathSciNet  Google Scholar 

  34. XIAO, Y., WEN, J., and WEN, X. Sound transmission loss of metamaterial-based thin plates with multiple subwavelength arrays of attached resonators. Journal of Sound and Vibration, 331, 5408–5423 (2012)

    Article  Google Scholar 

  35. VAN BELLE, L., CLAEYS, C., DECKERS, E., and DESMET, W. The impact of dam** on the sound transmission loss of locally resonant metamaterial plates. Journal of Sound and Vibration, 461, 114909 (2019)

    Article  Google Scholar 

  36. DE MELO FILHO, N. G. R., CLAEYS, C., DECKERS, E., and DESMET, W. Metamaterial foam core sandwich panel designed to attenuate the mass-spring-mass resonance sound transmission loss dip. Mechanical Systems and Signal Processing, 139, 106624 (2020)

    Article  Google Scholar 

  37. DE MELO FILHO, N. G. R., VAN BELLE, L., CLAEYS, C., DECKERS, E., and DESMET, W. Dynamic mass based sound transmission loss prediction of vibro-acoustic metamaterial double panels applied to the mass-air-mass resonance. Journal of Sound and Vibration, 442, 28–44 (2019)

    Article  Google Scholar 

  38. HE, Z. H., WANG, Y. Z., and WANG, Y. S. Active feedback control of effective mass density and sound transmission on elastic wave metamaterials. International Journal of Mechanical Sciences, 195, 106221 (2021)

    Article  Google Scholar 

  39. WANG, T., LIU, J., and CHEN, M. Sound transmission loss of an inertant metamaterial plate submerged in moving fluids. Applied Mathematical Modelling, 105, 815–831 (2022)

    Article  MathSciNet  Google Scholar 

  40. YAN, B., WANG, Z., MA, H., BAO, H., WANG, K., and WU, C. A novel lever-type vibration isolator with eddy current dam**. Journal of Sound and Vibration, 494, 115862 (2021)

    Article  Google Scholar 

  41. ZANG, J., YUAN, T. C., LU, Z. Q., ZHANG, Y. W., DING, H., and CHEN, L. Q. A lever-type nonlinear energy sink. Journal of Sound and Vibration, 437, 119–134 (2018)

    Article  Google Scholar 

  42. ZANG, J., CAO, R. Q., FANG, B., and ZHANG, Y. W. A vibratory energy harvesting absorber using integration of a lever-enhanced nonlinear energy sink and a levitation magnetoelectric energy harvester. Journal of Sound and Vibration, 484, 115534 (2020)

    Article  Google Scholar 

Download references

Funding

Project supported by the National Natural Science Foundation of China (No. 11972050)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **aodong Yang.

Additional information

Citation: QUE, W. Z., YANG, X. D., and ZHANG, W. Tunable low frequency band gaps and sound transmission loss of a lever-type metamaterial plate. Applied Mathematics and Mechanics (English Edition), 43(8), 1145–1158 (2022) https://doi.org/10.1007/s10483-022-2890-9

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Que, W., Yang, X. & Zhang, W. Tunable low frequency band gaps and sound transmission loss of a lever-type metamaterial plate. Appl. Math. Mech.-Engl. Ed. 43, 1145–1158 (2022). https://doi.org/10.1007/s10483-022-2890-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-022-2890-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation