Log in

Controllable wave propagation in a weakly nonlinear monoatomic lattice chain with nonlocal interaction and active control

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The one-dimensional monoatomic lattice chain connected by nonlinear springs is investigated, and the asymptotic solution is obtained through the Lindstedt-Poincar´e perturbation method. The dispersion relation is derived with the consideration of both the nonlocal and the active control effects. The numerical results show that the nonlocal effect can effectively enhance the frequency in the middle part of the dispersion curve. When the nonlocal effect is strong enough, zero and negative group velocities will be evoked at different points along the dispersion curve, which will provide different ways of transporting energy including the forward-propagation, localization, and backwardpropagation of wavepackets related to the phase velocity. Both the nonlinear effect and the active control can enhance the frequency, but neither of them is able to produce zero or negative group velocities. Specifically, the active control enhances the frequency of the dispersion curve including the point at which the reduced wave number equals zero, and therefore gives birth to a nonzero cutoff frequency and a band gap in the low frequency range. With a combinational adjustment of all these effects, the wave propagation behaviors can be comprehensively controlled, and energy transferring can be readily manipulated in various ways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. KUSHWAHA, M. S., HALEVI, P., DOBRZYNSKI, L., and DJAFARI-ROUHANI, B. Acoustic band structure of periodic elastic composites. Physical Review Letters, 71, 2022–2025 (1993)

    Article  Google Scholar 

  2. SIGALAS, M. M. and ECONOMOU, E. N. Elastic and acoustic wave band structure. Journal of Sound and Vibration, 158, 377–382 (1992)

    Article  Google Scholar 

  3. MARTINEZSALA, R., SANCHO, J., SÁNCHEZ, J. V., GÓMEZ, V., LLINARES, J., and MESEGUER, F. Sound-attenuation by sculpture. nature, 378, 241 (1995)

    Article  Google Scholar 

  4. KHELIF, A., CHOUJAA, A., DJAFARI-ROUHANI, B., WILM, M., BALLANDRAS, S., and LAUDE, V. Trap** and guiding of acoustic waves by defect modes in a full-band-gap ultrasonic crystal. Physical Review B, 68, 214301 (2003)

    Article  Google Scholar 

  5. KHELIF, A., CHOUJAA, A., BENCHABANE, S., DJAFARI-ROUHANI, B., and LAUDE, V. Guiding and bending of acoustic waves in highly confined phononic crystal waveguides. Applied Physics Letters, 84, 4400–4402 (2004)

    Article  Google Scholar 

  6. YUAN, B., LIANG, B., TAO, J. C., ZOU, X. Y., and CHENG, J. C. Broadband directional acoustic waveguide with high efficiency. Applied Physics Letters, 101, 043503 (2012)

    Article  Google Scholar 

  7. LI, X. F., NI, X., FENG, L., LU, M. H., HE, C., and CHEN, Y. F. Tunable unidirectional sound propagation through a sonic-crystal-based acoustic diode. Physical Review Letters, 106, 084301 (2011)

    Article  Google Scholar 

  8. ZHAO, D. G., LIU, Z. Y., QIU, C. Y., HE, Z. J., CAI, F. Y., and KE, M. Z. Surface acoustic waves in two-dimensional phononic crystals: dispersion relation and the eigenfield distribution of surface modes. Physical Review B, 76, 144301 (2007)

    Article  Google Scholar 

  9. CICEK, A., GUNGOR, T., KAYA, O. A., and ULUG, B. Guiding airborne sound through surface modes of a two-dimensional phononic crystal. Journal of Physics D: Applied Physics, 48, 235303 (2015)

    Article  Google Scholar 

  10. ERINGEN, A. C. and WEGNER, J. L. Nonlocal continuum field theories. Applied Mechanics Reviews, 56, B20–B22 (2003)

    Article  Google Scholar 

  11. WANG, Q. Wave propagation in carbon nanotubes via nonlocal continuum mechanics. Journal of Applied Physics, 98, 124301–124306 (2005)

    Article  Google Scholar 

  12. ZHANG, Y. Q., LIU, G. R., and XIE, X. Y. Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity. Physical Review B, 71, 195404 (2005)

    Article  Google Scholar 

  13. WANG, L. Vibration and instability analysis of tubular nano-and micro-beams conveying fluid using nonlocal elastic theory. Physica E, 41, 1835–1840 (2009)

    Article  Google Scholar 

  14. LEE, H. L. and CHANG, W. J. Surface effects on frequency analysis of nanotubes using nonlocal Timoshenko beam theory. Journal of Applied Physics, 108, 093503 (2010)

    Article  Google Scholar 

  15. MURMU, T., ADHIKARI, S., and WANG, C. Y. Torsional vibration of carbon nanotubebuckyball systems based on nonlocal elasticity theory. Physica E, 43, 1276–1280 (2011)

    Article  Google Scholar 

  16. CHEN, A., WANG, Y. S., KE, L. L., GUO, Y. F., and WANG, Z. D. Wave propagation in nanoscaled periodic layered structures. Journal of Computational and Theoretical Nanoscience, 10, 2427–2437 (2013)

    Article  Google Scholar 

  17. CHEN, A. L. and WANG, Y. S. Size-effect on band structures of nanoscale phononic crystals. Physica E, 44, 317–321 (2011)

    Article  Google Scholar 

  18. CHEN, A. L., YAN, D. J., WANG, Y. S., and ZHANG, C. Z. Anti-plane transverse waves propagation in nanoscale periodic layered piezoelectric structures. Ultrasonics, 65, 154–164 (2016)

    Article  Google Scholar 

  19. PNEVMATIKOS, S., FLYTZANIS, N., and REMOISSENET, M. Soliton dynamics of nonlinear diatomic lattices. Physical Review B, 33, 2308–2321 (1986)

    Article  Google Scholar 

  20. ALY, A. H. and MEHANEY, A. Low band gap frequencies and multiplexing properties in 1D and 2D mass spring structures. Chinese Physics B, 25, 333–339 (2016)

    Article  Google Scholar 

  21. ASIRI, S., BAZ, A., and PINES, D. Active periodic struts for a gearbox support system. Smart Materials and Structures, 15, 347–358 (2006)

    Article  MATH  Google Scholar 

  22. MALINOVSKY, V. S. and DONSKOY, D. M. Electro-magnetically controlled acoustic metamaterials with adaptive properties. The Journal of the Acoustical Society of America, 132, 2866–2872 (2012)

    Article  Google Scholar 

  23. CHAKRABORTY, G. and MALLIK, A. K. Dynamics of a weakly non-linear periodic chain. International Journal of Non-Linear Mechanics, 36, 375–389 (2001)

    Article  MATH  Google Scholar 

  24. JIMÉNEZ, N., MEHREM, A., PICÓ, R., GARCÍA-RAFFI, L. M., and SÁNCHEZ-MORCILLO, V. J. Nonlinear propagation and control of acoustic waves in phononic superlattices. Comptes Rendus Physique, 17, 543–554 (2015)

    Article  Google Scholar 

  25. MOVCHAN, A. B., MOVCHAN, N. V., and HAQ, S. Localised vibration modes and stop bands for continuous and discrete periodic structures. Materials Science and Engineering A, 431, 175–183 (2006)

    Article  Google Scholar 

  26. CHEN, S. B., WEN, J. H., WANG, G., YU, D., and WEN, X. Improved modeling of rods with periodic arrays of shunted piezoelectric patches. Journal of Intelligent Material Systems and Structures, 23, 1613–1621 (2012)

    Article  Google Scholar 

  27. WANG, Y. Z., LI, F. M., and WANG, Y. S. Influences of active control on elastic wave propagation in a weakly nonlinear phononic crystal with a monoatomic lattice chain. International Journal of Mechanical Sciences, 106, 357–362 (2016)

    Article  Google Scholar 

  28. BAZ, A. Active control of periodic structures. Journal of Vibration and Acoustics, 123, S14–S21 (2001)

    Article  Google Scholar 

  29. VAKAKIS, A. F., MANEVITCH, L. I., GENDELMAN, O., and BERGMAN, L. Dynamics of linear discrete systems connected to local, essentially non-linear attachments. Journal of Vibration and Acoustics, 264, 559–577 (2003)

    Google Scholar 

  30. WANG, Y. Z. and WANG, Y. S. Active control of elastic wave propagation in nonlinear phononic crystals consisting of diatomic lattice chain. Wave Motion, 78, 1–8 (2018)

    Article  MathSciNet  Google Scholar 

  31. WOLF, J., NGOC, T. D. K., KILLE, R., and MAYER, W. G. Investigation of Lamb waves having negative group velocity. The Journal of the Acoustical Society of America, 83, 122–126 (1988)

    Article  Google Scholar 

  32. NEGISHI, K. and LI, H. U. Strobo-photoelastic visualization of Lamb waves with negative group velocity propagating on a glass plate. Japanese Journal of Applied Physics, 35, 3175–3176 (1996)

    Article  Google Scholar 

  33. MARSTON, P. L. Negative group velocity Lamb waves on plates and applications to the scattering of sound by shells. The Journal of the Acoustical Society of America, 113, 2659–2662 (2003)

    Article  Google Scholar 

  34. MAZNEV, A. A. and EVERY, A. G. Surface acoustic waves with negative group velocity in a thin film structure on silicon. Applied Physics Letters, 95, 011903 (2009)

    Article  Google Scholar 

  35. PRADA, C., CLORENNEC, D., and ROYER, D. Local vibration of an elastic plate and zerogroup velocity Lamb modes. The Journal of the Acoustical Society of America, 124, 203–212 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Huang.

Additional information

Citation: WANG, J., ZHOU, W. J., HUANG, Y., LYU, C. F., CHEN, W. Q., and ZHU, W. Q. Controllable wave propagation in a weakly nonlinear monoatomic lattice chain with nonlocal interaction and active control. Applied Mathematics and Mechanics (English Edition), 39(8), 1059–1070 (2018) https://doi.org/10.1007/s10483-018-2360-6

Project supported by the National Natural Science Foundation of China (Nos. 11532001 and 11621062) and the Fundamental Research Funds for the Central Universities of China (No. 2016XZZX001-05)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhou, W., Huang, Y. et al. Controllable wave propagation in a weakly nonlinear monoatomic lattice chain with nonlocal interaction and active control. Appl. Math. Mech.-Engl. Ed. 39, 1059–1070 (2018). https://doi.org/10.1007/s10483-018-2360-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-018-2360-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation