Log in

Adoption of industry 4.0 technologies for decarbonisation in the steel industry: self-assessment framework with case illustration

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The study aims to identify, assess, and prioritise barriers to adopting industry 4.0 technology for decarbonisation in the steel industry. It also develops a barrier intensity index of industry 4.0 technologies for decarbonisation. The barriers to industry 4.0 technologies are identified through literature review and semi-structured interviews, and then it is classified into three major categories using technological organisational and environmental theory. The fuzzy Delphi method has been used to finalise these barriers. Then, three major categories of barriers and 21 sub-barriers are prioritised using the best–worst method. The study proposes a self-assessment framework for assessing the intensity of barriers by applying the Graph Theory Matrix approach. This framework is illustrated with the help of an Indian case of steel manufacturing organisation. The findings of the study indicate that a lack of supportive infrastructure followed by a lack of real-time control system and longer learning time due to poor knowledge transfer are the significant barriers to the adoption of industry 4.0 technologies for decarbonisation in the steel industry. Using the proposed self-assessment framework, a steel manufacturing organisation can analyse its position, identify gaps, and work on potential areas of improvement. Insights from this study can help in attaining sustainable development goals (13) i.e., climate action and net zero economy goal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data related to this paper is available with authors and will be available whenever required.

Notes

  1. Transforming the Steel Industry May Be the Ultimate Climate Challenge | BCG available at: https://www.bcg.com/publications/2022/steel-industry-carbon-emissions-challenge-solutions

  2. Sustainable Energy for All (SEforALL) Strategic Direction (Detailed) (un.org) available at: https://www.un.org/millenniumgoals/pdf/SEFA.pdf (Accessed on 15th March, 2023)

  3. https://www.un.org/sustainabledevelopment/climate-change/.

  4. https://news.un.org/en/story/2020/03/1059061.

References

  • Abdul-Hamid, A. Q., Ali, M. H., Tseng, M. L., Lan, S., & Kumar, M. (2020). Impeding challenges on industry 4.0 in circular economy: Palm oil industry in Malaysia. Computers & Operations Research, 123, 105052. https://doi.org/10.1016/J.COR.2020.105052

    Article  Google Scholar 

  • Abed, S. S. (2020). Social commerce adoption using TOE framework: An empirical investigation of Saudi Arabian SMEs. International Journal of Information Management, 53, 102118. https://doi.org/10.1016/J.IJINFOMGT.2020.102118

    Article  Google Scholar 

  • Abkenar, Z. A., Lajimi, H. F., Hamedi, M., Parkouhi, S. V. (2022). Determining the importance of barriers to IoT implementation using bayesian best-worst method. (pp. 144–159)

  • Agarwal, S., & Singh, A. P. (2022). Performance evaluation of textile wastewater treatment techniques using sustainability index: An integrated fuzzy approach of assessment. Journal of Cleaner Production, 337, 130384. https://doi.org/10.1016/J.JCLEPRO.2022.130384

    Article  Google Scholar 

  • Ali, I., & Aboelmaged, M. G. S. (2021). Implementation of supply chain 4.0 in the food and beverage industry: perceived drivers and barriers. International Journal of Productivity and Performance Management Ahead-of-Print. https://doi.org/10.1108/IJPPM-07-2020-0393

    Article  Google Scholar 

  • Bag, S., Wood, L. C., Telukdarie, A., & Venkatesh, V. G. (2021). Application of Industry 4.0 tools to empower circular economy and achieving sustainability in supply chain operations. Production Planning and Control. https://doi.org/10.1080/09537287.2021.1980902

    Article  Google Scholar 

  • Bhandari, D., Singh, R. K., & Garg, S. K. (2019). Prioritisation and evaluation of barriers intensity for implementation of cleaner technologies: Framework for sustainable production. Resources, Conservation and Recycling, 146, 156–167. https://doi.org/10.1016/J.RESCONREC.2019.02.038

    Article  Google Scholar 

  • Bhaskar, A., Assadi, M., & Somehsaraei, H. N. (2020). Decarbonization of the iron and steel industry with direct reduction of iron ore with green hydrogen. Energies, 2020(13), 75813. https://doi.org/10.3390/EN13030758

    Article  Google Scholar 

  • Branca, T. A., Fornai, B., Colla, V., Murri, M. M., Streppa, E., & Schröder, A. J. (2020). The challenge of digitalization in the steel sector. Metals, 10, 288. https://doi.org/10.3390/met10020288

    Article  Google Scholar 

  • Bui, T. D., Tsai, F. M., Tseng, M. L., & Ali, M. D. H. (2020). Identifying sustainable solid waste management barriers in practice using the fuzzy Delphi method. Resources, Conservation and Recycling, 154, 104625. https://doi.org/10.1016/J.RESCONREC.2019.104625

    Article  Google Scholar 

  • Chen, B., Wan, J., Shu, L., Li, P., Mukherjee, M., & Yin, B. (2017). Smart factory of industry 4.0: Key technologies, application case, and challenges. IEEE Access, 6, 6505–6519. https://doi.org/10.1109/ACCESS.2017.2783682

    Article  Google Scholar 

  • Cheng, J., Westman, J. (2020). Effects of digitalization in steel industry: Economic impacts and investment model.

  • Cruz-Jesus, F., Pinheiro, A., & Oliveira, T. (2019). Understanding CRM adoption stages: Empirical analysis building on the TOE framework. Computers in Industry, 109, 1–13. https://doi.org/10.1016/J.COMPIND.2019.03.007

    Article  Google Scholar 

  • De Groot, H. L., Verhoef, E. T., & Nijkamp, P. (2001). Energy saving by firms: decision-making, barriers and policies. Energy Economics, 23(6), 717–740.

    Article  Google Scholar 

  • Deloitte. (2014). Bridging the talent gap: Engineering a new workforce for the steel industry. (pp. 1–16)

  • Dubey, R., Gunasekaran, A., Childe, S. J., Wamba, S. F., & Papadopoulos, T. (2016). The impact of big data on world-class sustainable manufacturing. The International Journal of Advanced Manufacturing Technology, 84, 631–645.

    Article  Google Scholar 

  • Dubey, R., Gunasekaran, A., & Papadopoulos, T. (2017). Green supply chain management: Theoretical framework and further research directions. Benchmarking: An International Journal, 24(1), 184–218.

    Article  Google Scholar 

  • Fathi, M., & Ghobakhloo, M. (2020). Enabling mass customization and manufacturing sustainability in industry 4.0 context: A novel heuristic algorithm for in-plant material supply optimization. Sustainability, 12(16), 6669.

    Article  Google Scholar 

  • Forbert, H., & Marx, D. (2003). Calculation of the permanent of a sparse positive matrix. Computer Physics Communications, 150, 267–273. https://doi.org/10.1016/S0010-4655(02)00683-5

    Article  Google Scholar 

  • Fragassa, C., Babic, M., Bergmann, C. P., & Minak, G. (2019). Predicting the tensile behaviour of cast alloys by a pattern recognition analysis on experimental data. Metals, 9(5), 557.

    Article  Google Scholar 

  • Gajdzik, B., & Wolniak, R. (2021). Transitioning of steel producers to the steelworks 4.0—Literature review with case studies. Energies, 14, 4109. https://doi.org/10.3390/EN14144109

    Article  Google Scholar 

  • Glass, R., Meissner, A., Gebauer, C., Stürmer, S., Metternich, J. (2018). Identifying the barriers to Industrie 4.0. in Procedia CIRP. (pp. 985–988). Elsevier B.V

  • Govindan, K., & Hasanagic, M. (2018). A systematic review on drivers, barriers, and practices towards circular economy: a supply chain perspective. International Journal of Production Research, 56(1–2), 278-311.

    Article  Google Scholar 

  • Gupta, A., & Singh, R. K. (2021). Applications of emerging technologies in logistics sector for achieving circular economy goals during COVID 19 pandemic: Analysis of critical success factors. International Journal of Logistics Research and Applications. https://doi.org/10.1080/13675567.2021.1985095

    Article  Google Scholar 

  • Gupta, A., & Singh, R. K. (2020). Study of sustainability issues in an Indian logistics service provider: SAP-LAP approach. Qualitative Research in Organizations and Management: An International Journal. https://doi.org/10.1108/QROM-02-2020-1897

    Article  Google Scholar 

  • Hanoglu, U., & Šarler, B. (2019). Hot rolling simulation system for steel based on advanced meshless solution. Metals, 9(7), 788.

    Article  Google Scholar 

  • Harris, J., Anderson, J., & Shafron, W. (2000). Investment in energy efficiency: a survey of Australian firms. Energy policy, 28(12), 867–876.

    Article  Google Scholar 

  • Hopkins, J. L. (2021). An investigation into emerging industry 4.0 technologies as drivers of supply chain innovation in Australia. Computers in Industry, 125, 103323. https://doi.org/10.1016/J.COMPIND.2020.103323

    Article  Google Scholar 

  • Jayakrishna, K., Vinodh, S., & Anish, S. (2016). A graph theory approach to measure the performance of sustainability enablers in a manufacturing organization. International Journal of Sustainable Engineering, 9, 47–58. https://doi.org/10.1080/19397038.2015.1050970

    Article  Google Scholar 

  • Jayashree, S., Reza, M. N. H., Malarvizhi, C. A. N., Gunasekaran, A., & Rauf, M. A. (2022). Testing an adoption model for Industry 4.0 and sustainability: A Malaysian scenario. Sustainable Production and Consumption, 31, 313–330. https://doi.org/10.1016/J.SPC.2022.02.015

    Article  Google Scholar 

  • John, N., Wesseling, J. H., Worrell, E., & Hekkert, M. (2022). How key-enabling technologies’ regimes influence sociotechnical transitions: The impact of artificial intelligence on decarbonization in the steel industry. Journal of Cleaner Production, 370, 133624. https://doi.org/10.1016/J.JCLEPRO.2022.133624

    Article  Google Scholar 

  • Kablan, M. M. (2003). Energy conservation projects implementation at Jordan’s industrial sector: a total quality management approach. Energy, 28(15), 1533−1543.

    Article  Google Scholar 

  • Kamble, S. S., Gunasekaran, A., & Sharma, R. (2018). Analysis of the driving and dependence power of barriers to adopt industry 4.0 in Indian manufacturing industry. Computers in Industry, 101, 107–119. https://doi.org/10.1016/J.COMPIND.2018.06.004

    Article  Google Scholar 

  • Khan, S. A. R., Razzaq, A., Yu, Z., & Miller, S. (2021). Industry 4.0 and circular economy practices: A new era business strategies for environmental sustainability. Business Strategy and the Environment, 30, 4001–4014. https://doi.org/10.1002/bse.2853

    Article  Google Scholar 

  • Kristoffersen, E., Blomsma, F., Mikalef, P., & Li, J. (2020). The smart circular economy: A digital-enabled circular strategies framework for manufacturing companies. Journal of Business Research, 120, 241–261. https://doi.org/10.1016/j.jbusres.2020.07.044

    Article  Google Scholar 

  • Kumar, D., Singh, R. K., Mishra, R., & Vlachos, I. (2023). Big data analytics in supply chain decarbonisation: a systematic literature review and future research directions. International Journal of Production Research, 1–21

  • Kusi-Sarpong, S., Gupta, H., Khan, S. A., ChiappettaJabbour, C. J., Rehman, S. T., & Kusi-Sarpong, H. (2021). Sustainable supplier selection based on industry 4.0 initiatives within the context of circular economy implementation in supply chain operations. Production Planning and Control. https://doi.org/10.1080/09537287.2021.1980906

    Article  Google Scholar 

  • Lombardi, R. (2019). Knowledge transfer and organizational performance and business process: Past, present and future researches. Business Process Management Journal, 25, 2–9. https://doi.org/10.1108/BPMJ-02-2019-368/FULL/PDF

    Article  Google Scholar 

  • Luthra, S., Garg, D., Mangla, S.K., Singh Berwal, Y.P. (2018). Analyzing challenges to Internet of Things (IoT) adoption and diffusion: An Indian context, in Procedia Computer Science. (pp. 733–739). Elsevier B.V

  • Ma, Z., Shao, C., Ma, S., & Ye, Z. (2011). Constructing road safety performance indicators using fuzzy delphi method and grey delphi method. Expert Systems with Applications, 38, 1509–1514. https://doi.org/10.1016/j.eswa.2010.07.062

    Article  Google Scholar 

  • Majumdar, A., Garg, H., & Jain, R. (2021). Managing the barriers of Industry 4.0 adoption and implementation in textile and clothing industry: Interpretive structural model and triple helix framework. Computers in Industry, 125, 103372. https://doi.org/10.1016/J.COMPIND.2020.103372

    Article  Google Scholar 

  • Maroufkhani, P., Tseng, M. L., Iranmanesh, M., Ismail, W. K. W., & Khalid, H. (2020). Big data analytics adoption: Determinants and performances among small to medium-sized enterprises. International Journal of Information Management, 54, 102190.

  • Masood, T., & Egger, J. (2019). Augmented reality in support of Industry 4.0—Implementation challenges and success factors. Robotics and Computer-Integrated Manufacturing, 58, 181–195.

    Article  Google Scholar 

  • Mishra, R., Singh, R., & Govindan, K. (2022). Net-zero economy research in the field of supply chain management: a systematic literature review and future research agenda. The International Journal of Logistics Management, (ahead-of-print).

  • Miśkiewicz, R., & Wolniak, R. (2020). Practical application of the industry 4.0 concept in a steel company. Sustainability, 12, 5776.

    Article  Google Scholar 

  • Mittal, V. K., Egede, P., Herrmann, C., & Sangwan, K. S. (2013). Comparison of drivers and barriers to green manufacturing: a case of India and Germany. In Re-engineering Manufacturing for Sustainability: Proceedings of the 20th CIRP International Conference on Life Cycle Engineering, Singapore 17–19 April, 2013 (pp. 723–728). Springer: Singapore.

  • Moktadir, M. A., Ali, S. M., Kusi-Sarpong, S., & Shaikh, M. A. A. (2018). Assessing challenges for implementing industry 4.0: Implications for process safety and environmental protection. Process Safety and Environmental Protection, 117, 730–741. https://doi.org/10.1016/J.PSEP.2018.04.020

    Article  Google Scholar 

  • Montoya-Torres, J. R., Gutierrez-Franco, E., & Blanco, E. E. (2015). Conceptual framework for measuring carbon footprint in supply chains. Production Planning and Control, 26, 265–279. https://doi.org/10.1080/09537287.2014.894215

    Article  Google Scholar 

  • Mote, N. J. I., & Karadas, G. (2022). The impact of automation and knowledge workers on employees’ outcomes: Mediating role of knowledge transfer. Sustainability, 14, 1377. https://doi.org/10.3390/SU14031377

    Article  Google Scholar 

  • Muduli, K., Govindan, K., Barve, A., & Geng, Y. (2013). Barriers to green supply chain management in Indian mining industries: a graph theoretic approach. Journal of Cleaner Production, 47, 335–344.

    Article  Google Scholar 

  • Muscio, A., & Ciffolilli, A. (2019). What drives the capacity to integrate Industry 40 technologies? Evidence from European R&d Projects, 29, 169–183. https://doi.org/10.1080/10438599.2019.1597413

    Article  Google Scholar 

  • Muslemani, H., Liang, X., Kaesehage, K., Ascui, F., & Wilson, J. (2021). Opportunities and challenges for decarbonizing steel production by creating markets for ‘green steel’ products. Journal of Cleaner Production, 315, 128127. https://doi.org/10.1016/J.JCLEPRO.2021.128127

    Article  Google Scholar 

  • Nandi, S., Sarkis, J., Hervani, A. A., & Helms, M. M. (2021). Redesigning supply chains using blockchain-enabled circular economy and COVID-19 experiences. Sustainable Production and Consumption. https://doi.org/10.1016/j.spc.2020.10.019

    Article  Google Scholar 

  • Neef, C., Hirzel, S., Karlsruhe, M.A. (2018). Industry 4.0 in the European iron and steel industry: Towards an overview of implementations and perspectives working document. Karlsruhe

  • Ocampo, L., Ebisa, J. A., Ombe, J., & GeenEscoto, M. (2018). Sustainable ecotourism indicators with fuzzy Delphi method—A Philippine perspective. Ecological Indicators, 93, 874–888. https://doi.org/10.1016/J.ECOLIND.2018.05.060

    Article  Google Scholar 

  • Ozkan-Ozen, Y. D., Kazancoglu, Y., & Kumar Mangla, S. (2020). Synchronized barriers for circular supply chains in industry 3.5/industry 4.0 transition for sustainable resource management. Resources, Conservation and Recycling. https://doi.org/10.1016/j.resconrec.2020.104986

    Article  Google Scholar 

  • Padilla-Rivera, A., Do Carmo, B. B. T., Arcese, G., & Merveille, N. (2021). Social circular economy indicators: Selection through fuzzy delphi method. Sustainable Production and Consumption, 26, 101–110. https://doi.org/10.1016/J.SPC.2020.09.015

    Article  Google Scholar 

  • Priyadarshini, J., Singh, R. K., Mishra, R., & Mustafa Kamal, M. (2022). Adoption of additive manufacturing for sustainable operations in the era of circular economy: Self-assessment framework with case illustration. Computers and Industrial Engineering, 171, 108514. https://doi.org/10.1016/j.cie.2022.108514

    Article  Google Scholar 

  • PwC and Indian Steel Association. (2019). The Indian steel industry: Growth, challenges and digital disruption. Available online at : https://www.pwc.in/assets/pdfs/consulting/technology/the-indian-steel-industry-growth-challenges-and-digital-disruption.pdf. Accessed 14 June 2023.

  • Rejeb, A., Rejeb, K., Keogh, J. G., & Zailani, S. (2022). Barriers to blockchain adoption in the circular economy: A Fuzzy Delphi and best-worst approach. Sustainability, 14, 3611. https://doi.org/10.3390/SU14063611

    Article  Google Scholar 

  • Rezaei, J. (2015). Best-worst multi-criteria decision-making method. Omega, 53, 49–57. https://doi.org/10.1016/J.OMEGA.2014.11.009

    Article  Google Scholar 

  • Rezaei, J. (2016). Best-worst multi-criteria decision-making method: Some properties and a linear model. Omega, 64, 126–130. https://doi.org/10.1016/J.OMEGA.2015.12.001

    Article  Google Scholar 

  • Rishi S. (2017). How **dal steel and power is using IoT to future proof its business. Available online at: https://www.cioandleader.com/article/2017/06/05/how-**dal-steel-and-power-using-iot-future-proof-its-business. Accessed on 14 June 2023.

  • Santos, C. A., Spim Jr, J. A., Ierardi, M. C., & Garcia, A. (2002). The use of artificial intelligence technique for the optimisation of process parameters used in the continuous casting of steel. Applied Mathematical Modelling, 26(11), 1077–1092.

    Article  Google Scholar 

  • Sarrakh, R., Renukappa, S., & Suresh, S. (2022). Evaluation of challenges for sustainable transformation of Qatar oil and gas industry: A graph theoretic and matrix approach. Energy Policy, 162, 112766. https://doi.org/10.1016/J.ENPOL.2021.112766

    Article  Google Scholar 

  • Shahabuddin, M., Brooks, G., & Rhamdhani, M. A. (2023). Decarbonisation and hydrogen integration of steel industries: Recent development, challenges and technoeconomic analysis. Journal of Cleaner Production, 395, 136391. https://doi.org/10.1016/J.JCLEPRO.2023.136391

    Article  Google Scholar 

  • Sharma, M., Kamble, S., Mani, V., Sehrawat, R., Belhadi, A., & Sharma, V. (2021). Industry 4.0 adoption for sustainability in multi-tier manufacturing supply chain in emerging economies. Journal of Cleaner Production, 281, 125013. https://doi.org/10.1016/J.JCLEPRO.2020.125013

    Article  Google Scholar 

  • Shen, J., Zhang, Q., Xu, L., Tian, S., & Wang, P. (2021). Future CO2 emission trends and radical decarbonization path of iron and steel industry in China. Journal of Cleaner Production, 326, 129354. https://doi.org/10.1016/J.JCLEPRO.2021.129354

    Article  Google Scholar 

  • Shi, T. (2003). Moving towards sustainable development: Thetoric, policy and reality of ecological agriculture in China. The International Journal of Sustainable Development & World Ecology, 10(3), 195–210.

  • Singh, R. K., & Kumar, P. (2020). Measuring the flexibility index for a supply chain using graph theory matrix approach. Journal of Global Operations and Strategic Sourcing, 13, 56–69. https://doi.org/10.1108/JGOSS-04-2019-0027/FULL/XML

    Article  Google Scholar 

  • Skoczkowski, T., Verdolini, E., Bielecki, S., Kochański, M., Korczak, K., & Węglarz, A. (2020). Technology innovation system analysis of decarbonisation options in the EU steel industry. Energy, 212, 118688. https://doi.org/10.1016/J.ENERGY.2020.118688

    Article  Google Scholar 

  • Song, M., Cen, L., Zheng, Z., Fisher, R., Liang, X., Wang, Y., & Huisingh, D. (2017). How would big data support societal development and environmental sustainability? Insights and practices. Journal of Cleaner Production, 142, 489–500. https://doi.org/10.1016/J.JCLEPRO.2016.10.091

    Article  Google Scholar 

  • Song, M., Fisher, R., & Kwoh, Y. (2019). Technological challenges of green innovation and sustainable resource management with large scale data. Technological Forecasting and Social Change, 144, 361–368. https://doi.org/10.1016/J.TECHFORE.2018.07.055

    Article  Google Scholar 

  • Song, M., Zhu, S., Wang, J., & Zhao, J. (2020). Share green growth: Regional evaluation of green output performance in China. International Journal of Production Economics, 219, 152–163. https://doi.org/10.1016/J.IJPE.2019.05.012

    Article  Google Scholar 

  • Tian, S., & Xu, K. (2017). An algorithm for surface defect identification of steel plates based on genetic algorithm and extreme learning machine. Metals, 7(8), 311.

  • Ullah, F., Sepasgozar, S. M. E., Thaheem, M. J., & Al-Turjman, F. (2021). Barriers to the digitalisation and innovation of Australian smart real estate: A managerial perspective on the technology non-adoption. Environmental Technology & Innovation, 22, 101527. https://doi.org/10.1016/J.ETI.2021.101527

    Article  Google Scholar 

  • Vishwakarma, L. P., Singh, R. K., Mishra, R., & Kumari, A. (2023). Application of artificial intelligence for resilient and sustainable healthcare system: systematic literature review and future research directions. International Journal of Production Research, 1–23.

  • Wankhede, V. A., & Vinodh, S. (2021). Analysis of Industry 4.0 challenges using best worst method: A case study. Computers & Industrial Engineering, 159, 107487. https://doi.org/10.1016/J.CIE.2021.107487

    Article  Google Scholar 

  • Zaini, I. N., Nurdiawati, A., Gustavsson, J., Wei, W., Thunman, H., Gyllenram, R., Samuelsson, P., & Yang, W. (2023). Decarbonising the iron and steel industries: Production of carbon-negative direct reduced iron by using biosyngas. Energy Conversion and Management, 281, 116806.

    Article  Google Scholar 

  • Zhang, Y., Sun, J., Yang, Z., & Wang, Y. (2020). Critical success factors of green innovation: Technology, organization and environment readiness. Journal of Cleaner Production, 264, 121701. https://doi.org/10.1016/J.JCLEPRO.2020.121701

    Article  Google Scholar 

  • Zhang, J. (2017). Evaluating regional low-carbon tourism strategies using the fuzzy Delphi- analytic network process approach. Journal of Cleaner Production, 141, 409–419. https://doi.org/10.1016/J.JCLEPRO.2016.09.122

    Article  Google Scholar 

  • Zhang, K. (2012). Energy procedia design of real time monitor system of manufacture process of iron and steel industry based on new style sensors peer-review under responsibility of [name organizer]. Energy Procedia, 16, 627–632. https://doi.org/10.1016/j.egypro.2012.01.101

    Article  Google Scholar 

  • Zhao, X., Ma, X., Chen, B., Shang, Y., & Song, M. (2022). Challenges toward carbon neutrality in China: Strategies and countermeasures. Resources, Conservation and Recycling, 176, 105959. https://doi.org/10.1016/J.RESCONREC.2021.105959

    Article  Google Scholar 

Download references

Acknowledgements

The research work reported in this paper has been funded by Indian Council of Social Science Research (ICSSR), Major Project (02/13568/GN/2021-22/ICSSR/RP/MJ), New Delhi

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Kr Singh.

Ethics declarations

Conflict of interest

Authors do not have any potential conflicts of interest.

Human or animal rights

This research does not involve Human Participants and/or Animals.

Informed consent

Yes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

(See Tables A1, A2, A3, A4, A5, A6, A7, A8, A9).

Table A1 Experts' profile for FDM
Table A2 Experts' profile for BWM
Table A3 BO Vectors barriers to industry 4.0 technologies adoption
Table A4 BO vectors for technological category of factors
Table A5 BO vectors for organization category of factors
Table A6 BO vectors for environment category of factors
Table A7 OW vectors for three categories of factors
Table A8 Optimal weights for three categories
Table A9 Optimal weights for Technological category of factors

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, R., Singh, R.K. & Gunasekaran, A. Adoption of industry 4.0 technologies for decarbonisation in the steel industry: self-assessment framework with case illustration. Ann Oper Res (2023). https://doi.org/10.1007/s10479-023-05440-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10479-023-05440-0

Keywords

Navigation