Log in

Analyzing blockchain adoption barriers in manufacturing supply chains by the neutrosophic analytic hierarchy process

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Tools established for managing information flow in supply chain management and logistics should match digital transformations. This issue is particularly salient for develo** nations that hope to achieve sustainable development goals in a globalized era. Modern technologies are required to ensure a secure, transparent, and traceable path of information flow in global supply chains; however, it is not always straightforward for businesses in develo** economies to adopt new digital technologies while sustaining productivity. One of the foundational technologies that can be used to create a basis for economic and social systems and to affect manufacturing supply chains in develo** economies is blockchain. In this study, we analyze the barriers to blockchain technology adoption in manufacturing supply chains using the neutrosophic analytic hierarchy process (N-AHP). We propose an action plan framework for the validation of blockchain technology in a develo** economy. The findings demonstrate that “transaction-level uncertainties” comprise the most critical barrier and have the highest weight in the final ranking followed by “usage in the underground economy”, “managerial commitment”, “challenges in scalability”, and “privacy risks”. This paper can assist industrial managers and experts in emerging economies to more clearly identify barriers to the implementation of blockchain technology and show them how to successfully employ blockchain technology in their supply chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Adapted from BCG in Bender et al. (2019)]

Fig. 4

Similar content being viewed by others

References

Download references

Acknowledgements

We sincerely thank the editors and anonymous reviewers for their valuable, critical, and constructive comments, which have helped us improve our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James J. H. Liou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Neutrosophic set theory (NST)

Appendix: Neutrosophic set theory (NST)

Some basic definitions of NST are provided in this section to aid in understanding the implementation of N-AHP.

Definition 1

Neutrosophic set (NS) (Vafadarnikjoo, 2020). Let \(U\) be a finite set of objects, and let \(x\) signify a generic element in \(U\). The NS \(A\) in \(U\) is characterized by a truth-membership function \({T}_{A}(x)\), an indeterminacy-membership function \({I}_{A}(x)\), and a falsity-membership function \({F}_{A}(x)\). \({T}_{A}(x)\), \({I}_{A}(x)\), and \({F}_{A}(x)\) are the elements of \(\left]{0}^{-},{1}^{+}\right[\). It can be shown as Eq. (5):

$$ A = \left\{ {\left\langle {x, \left( {T_{A} \left( x \right), I_{A} \left( x \right), F_{A} \left( x \right)} \right)} \right\rangle :x \in U, T_{A} \left( x \right), I_{A} \left( x \right), F_{A} \left( x \right) \in \left] {0^{ - } ,1^{ + } } \right[ } \right\} $$
(5)

Note that \({0}^{-}\le {T}_{A}\left(x\right)+{I}_{A}\left(x\right)+{F}_{A}(x)\le {3}^{+}\).

Definition 2

Single-valued neutrosophic set (SVNS) (Vafadarnikjoo, 2020). Let \(U\) be a finite set of elements, and let \(x\) signify a generic element in \(U\). An SVNS \(A\) in \(U\) is defined by a truth-membership function \({T}_{A}(x)\), an indeterminacy-membership function \({I}_{A}(x)\), and a falsity-membership function \({F}_{A}(x)\). \({T}_{A}(x)\), \({I}_{A}(x)\), and \({F}_{A}(x)\) are the elements of \(\left[{0,1}\right]\). It can be shown as Eq. (6):

$$ A = \left\{ {\left\langle {x, \left( {T_{A} \left( x \right), I_{A} \left( x \right), F_{A} \left( x \right)} \right)} \right\rangle :x \in U, T_{A} \left( x \right), I_{A} \left( x \right), F_{A} \left( x \right) \in \left[ {0,1} \right] } \right\} $$
(6)

Note that \(0\le {T}_{A}\left(x\right)+{I}_{A}\left(x\right)+{F}_{A}(x)\le 3\).

For convenience, an SVNS \(A=\left\{<x, \left({T}_{A}\left(x\right), {I}_{A}\left(x\right), {F}_{A}(x)\right)>:x\in U\right\}\) is sometimes shown as a \(A=\left\{<{T}_{A}\left(x\right), {I}_{A}\left(x\right), {F}_{A}(x)>:x\in U\right\}\) in simplified form.

Definition 3

Single-valued trapezoidal neutrosophic number (SVTNN) (Deli & Subas, 2014). An SVTNN \(\stackrel{\sim }{a}=<\left({a}_{1},{b}_{1},{c}_{1},{d}_{1}\right);{w}_{\stackrel{\sim }{a}},{u}_{\stackrel{\sim }{a}},{y}_{\stackrel{\sim }{a}}>\), \({a}_{1},{b}_{1},{c}_{1},{d}_{1}\in R\), \({a}_{1}\le {b}_{1}\le {c}_{1}\le {d}_{1}\), and \({w}_{\stackrel{\sim }{a}},{u}_{\stackrel{\sim }{a}},{y}_{\stackrel{\sim }{a}}\in \left[\mathrm{0,1}\right]\) is a particular single-valued neutrosophic number (SVNN) whose \({T}_{\stackrel{\sim }{a}}\left(x\right)\), \({I}_{\stackrel{\sim }{a}}\left(x\right)\), and \({F}_{\stackrel{\sim }{a}}\left(x\right)\) are presented as Equations (7) to (9), respectively.

$$ T_{{\tilde{a}}} \left( x \right) = \left\{ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\left( {x - a_{1} } \right)w_{{\tilde{a}}} /\left( {b_{1} - a_{1} } \right)} & {a_{1} \le x < b_{1} } \\ \end{array} } \\ {\begin{array}{*{20}c} {w_{{\tilde{a}}} } & {b_{1} \le x \le c_{1} } \\ \end{array} } \\ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\left( {d_{1} - x} \right)w_{{\tilde{a}}} /\left( {d_{1} - c_{1} } \right) } & {c_{1} < x \le d_{1} } \\ \end{array} } \\ {\begin{array}{*{20}c} {0 } & {otherwise} \\ \end{array} } \\ \end{array} } \\ \end{array} } \right. $$
(7)
$$ I_{{\tilde{a}}} \left( x \right) = \left\{ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\left( {b_{1} - x + u_{{\tilde{a}}} \left( {x - a_{1} } \right)} \right)/\left( {b_{1} - a_{1} } \right)} & {a_{1} \le x < b_{1} } \\ \end{array} } \\ {\begin{array}{*{20}c} {u_{{\tilde{a}}} } & {b_{1} \le x \le c_{1} } \\ \end{array} } \\ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\left( {x - c_{1} + u_{{\tilde{a}}} \left( {d_{1} - x} \right)} \right)/\left( {d_{1} - c_{1} } \right) } & {c_{1} < x \le d_{1} } \\ \end{array} } \\ {\begin{array}{*{20}c} {1 } & {otherwise} \\ \end{array} } \\ \end{array} } \\ \end{array} } \right. $$
(8)
$$ F_{{\tilde{a}}} \left( x \right) = \left\{ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\left( {b_{1} - x + y_{{\tilde{a}}} \left( {x - a_{1} } \right)} \right)/\left( {b_{1} - a_{1} } \right)} & {a_{1} \le x < b_{1} } \\ \end{array} } \\ {\begin{array}{*{20}c} {y_{{\tilde{a}}} } & {b_{1} \le x \le c_{1} } \\ \end{array} } \\ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\left( {x - c_{1} + y_{{\tilde{a}}} \left( {d_{1} - x} \right)} \right)/\left( {d_{1} - c_{1} } \right) } & {c_{1} < x \le d_{1} } \\ \end{array} } \\ {\begin{array}{*{20}c} {1 } & {otherwise} \\ \end{array} } \\ \end{array} } \\ \end{array} } \right. $$
(9)

Definition 4

Addition of two SVTNNs (Vafadarnikjoo, 2020). Given \(\stackrel{\sim }{a}=<\left({a}_{1},{b}_{1},{c}_{1},{d}_{1}\right);{w}_{\stackrel{\sim }{a}},{u}_{\stackrel{\sim }{a}},{y}_{\stackrel{\sim }{a}}>\) and \(\stackrel{\sim }{b}=<\left({a}_{2},{b}_{2},{c}_{2},{d}_{2}\right);{w}_{\stackrel{\sim }{b}},{u}_{\stackrel{\sim }{b}},{y}_{\stackrel{\sim }{b}}>\), \({w}_{\stackrel{\sim }{a}},{u}_{\stackrel{\sim }{a}},{y}_{\stackrel{\sim }{a}}, {w}_{\stackrel{\sim }{b}},{u}_{\stackrel{\sim }{b}},{y}_{\stackrel{\sim }{b}} \in \left[\mathrm{0,1}\right]\), \({a}_{1},{b}_{1},{c}_{1},{d}_{1},{a}_{2},{b}_{2},{c}_{2},{d}_{2}\in {\mathbb{R}}\), \({a}_{1}\le {b}_{1}\le {c}_{1}\le {d}_{1}\), and \({a}_{2}\le {b}_{2}\le {c}_{2}\le {d}_{2}\), Eq. (10) is true.

$$ \tilde{a} + \tilde{b} = \left\langle {\left( {a_{1} + a_{2} , b_{1} + b_{2} , c_{1} + c_{2} , d_{1} + d_{2} } \right);w_{{\tilde{a}}} + w_{{\tilde{b}}} - w_{{\tilde{a}}} w_{{\tilde{b}}} , u_{{\tilde{a}}} u_{{\tilde{b}}} , y_{{\tilde{a}}} y_{{\tilde{b}}} } \right\rangle $$
(10)

Definition 5

Subtraction of two SVTNNs (Smarandache, 2016). Let \(\stackrel{\sim }{a}=<\left({a}_{1},{b}_{1},{c}_{1},{d}_{1}\right);{w}_{\stackrel{\sim }{a}},{u}_{\stackrel{\sim }{a}},{y}_{\stackrel{\sim }{a}}>\) and \(\stackrel{\sim }{b}=<\left({a}_{2},{b}_{2},{c}_{2},{d}_{2}\right);{w}_{\stackrel{\sim }{b}},{u}_{\stackrel{\sim }{b}},{y}_{\stackrel{\sim }{b}}>\) be two SVTNNs and \({w}_{\stackrel{\sim }{a}},{u}_{\stackrel{\sim }{a}},{y}_{\stackrel{\sim }{a}}, {w}_{\stackrel{\sim }{b}},{u}_{\stackrel{\sim }{b}},{y}_{\stackrel{\sim }{b}} \in \left[\mathrm{0,1}\right]\) with the restrictions that \({w}_{\stackrel{\sim }{b}}\ne 1\), \({u}_{\stackrel{\sim }{b}}\ne 0\), \({y}_{\stackrel{\sim }{b}}\ne 0\), and \({a}_{1},{b}_{1},{c}_{1},{d}_{1},{a}_{2},{b}_{2},{c}_{2},{d}_{2}\in {\mathbb{R}}\), \({a}_{1}\le {b}_{1}\le {c}_{1}\le {d}_{1}\), and \({a}_{2}\le {b}_{2}\le {c}_{2}\le {d}_{2}\); then, the subtraction of the two SVTNNs is shown in Eq. (11):

$$ \tilde{a} - \tilde{b} = \left\langle {\left( {a_{1} - d_{2} , b_{1} - c_{2} , c_{1} - b_{2} , d_{1} - a_{2} } \right);\frac{{w_{{\tilde{a}}} - w_{{\tilde{b}}} }}{{1 - w_{{\tilde{b}}} }}, \frac{{u_{{\tilde{a}}} }}{{u_{{\tilde{b}}} }}, \frac{{y_{{\tilde{a}}} }}{{y_{{\tilde{b}}} }}} \right\rangle $$
(11)

Remark: If a component result is less than zero, it is replaced with zero; if a component result is greater than one, it is replaced with one.

Definition 6

Division of two SVTNNs (Smarandache, 2016). Let \(\stackrel{\sim }{a}=<\left({a}_{1},{b}_{1},{c}_{1},{d}_{1}\right);{w}_{\stackrel{\sim }{a}},{u}_{\stackrel{\sim }{a}},{y}_{\stackrel{\sim }{a}}>\), and \(\stackrel{\sim }{b}=<\left({a}_{2},{b}_{2},{c}_{2},{d}_{2}\right);{w}_{\stackrel{\sim }{b}},{u}_{\stackrel{\sim }{b}},{y}_{\stackrel{\sim }{b}}>\) be two SVTNNs, where \({a}_{1},{b}_{1},{c}_{1},{d}_{1},{a}_{2},{b}_{2},{c}_{2},{d}_{2}>0\), \({a}_{1}\le {b}_{1}\le {c}_{1}\le {d}_{1}\), \({a}_{2}\le {b}_{2}\le {c}_{2}\le {d}_{2}\), and \({w}_{\stackrel{\sim }{a}},{u}_{\stackrel{\sim }{a}},{y}_{\stackrel{\sim }{a}}, {w}_{\stackrel{\sim }{b}},{u}_{\stackrel{\sim }{b}},{y}_{\stackrel{\sim }{b}} \in \left[\mathrm{0,1}\right]\) with the restrictions that \({w}_{\stackrel{\sim }{b}}\ne 1\), \({u}_{\stackrel{\sim }{b}}\ne 0\), \({y}_{\stackrel{\sim }{b}}\ne 0\); then, the division of the two SVTNNs is shown in Eq. (12):

$$ \tilde{a} \div \tilde{b} = \left\langle {\left( {\frac{{a_{1} }}{{d_{2} }}, \frac{{b_{1} }}{{c_{2} }}, \frac{{c_{1} }}{{b_{2} }}, \frac{{d_{1} }}{{a_{2} }}} \right);\frac{{w_{{\tilde{a}}} }}{{w_{{\tilde{b}}} }}, \frac{{u_{{\tilde{a} - }} u_{{\tilde{b}}} }}{{1 - u_{{\tilde{b}}} }}, \frac{{y_{{\tilde{a}}} - y_{{\tilde{b}}} }}{{1 - y_{{\tilde{b}}} }}} \right\rangle $$
(12)

Remark: If a component result is less than zero, it is replaced with zero; if a component result is greater than one, it is replaced with one.

Definition 7

Inverse of an SVTNN Let \(\stackrel{\sim }{a}=<\left({a}_{1},{b}_{1},{c}_{1},{d}_{1}\right);{w}_{\stackrel{\sim }{a}},{u}_{\stackrel{\sim }{a}},{y}_{\stackrel{\sim }{a}}>\) be an SVTNN where \({a}_{1},{b}_{1},{c}_{1},{d}_{1}>0\), \({a}_{1}\le {b}_{1}\le {c}_{1}\le {d}_{1}\), and \({w}_{\stackrel{\sim }{a}},{u}_{\stackrel{\sim }{a}},{y}_{\stackrel{\sim }{a}}, \in \left[\mathrm{0,1}\right]\) then the inverse of \(\stackrel{\sim }{a}\) is represented in Eq. (13):

$$ \tilde{a}^{ - 1} = \frac{1}{{ \tilde{a}}} = \left\langle {\left( {\frac{1}{{d_{1} }},\frac{1}{{c_{1} }},\frac{1}{{b_{1} }},\frac{1}{{a_{1} }}} \right);\frac{1}{{w_{{\tilde{a}}} }},\frac{{u_{{\tilde{a}}} }}{{u_{{\tilde{a}}} - 1}},\frac{{y_{{\tilde{a}}} }}{{y_{{\tilde{a}}} - 1}}} \right\rangle $$
(13)

Remark: If a component result is less than zero, it is replaced with zero; if a component result is greater than one, it is replaced with one.

Definition 8

The TNWAA operator (Vafadarnikjoo et al., 2018). Let \({\stackrel{\sim }{a}}_{j}=<\left({a}_{j},{b}_{j},{c}_{j},{d}_{j}\right);{w}_{{\stackrel{\sim }{a}}_{j}},{u}_{{\stackrel{\sim }{a}}_{j}},{y}_{{\stackrel{\sim }{a}}_{j}}>\left(j=\mathrm{1,2},\dots ,n\right)\) be a set of SVTNNs; then, a TNWAA operator is computed based on Eq. (14):

$$ TNWAA\left( {\tilde{a}_{1} ,\tilde{a}_{2} , \ldots ,\tilde{a}_{n} } \right) = \mathop \sum \limits_{j = 1}^{n} p_{j} \tilde{a}_{j} = \left\langle {\left( {\mathop \sum \limits_{j = 1}^{n} p_{j} a_{j} ,\mathop \sum \limits_{j = 1}^{n} p_{j} b_{j} ,\mathop \sum \limits_{j = 1}^{n} p_{j} c_{j} ,\mathop \sum \limits_{j = 1}^{n} p_{j} d_{j} } \right);1 - \mathop \prod \limits_{j = 1}^{n} \left( {1 - w_{{\tilde{a}_{j} }} } \right)^{{p_{j} }} ,\mathop \prod \limits_{j = 1}^{n} u_{{\tilde{a}_{j} }}^{{p_{j} }} ,\mathop \prod \limits_{j = 1}^{n} y_{{\tilde{a}_{j} }}^{{p_{j} }} } \right\rangle $$
(14)

Here, \({p}_{j}\) is the weight of \({\stackrel{\sim }{a}}_{j}\) \(\left(j=\mathrm{1,2},\dots ,n\right)\) while \({p}_{j}>0\), and \(\sum_{j=1}^{n}{p}_{j}=1\).

Definition 9: Score function of a SVTNN

(Vafadarnikjoo, 2020). Given \(\stackrel{\sim }{a}=<\left(a,b,c,d\right);{w}_{\stackrel{\sim }{a}},{u}_{\stackrel{\sim }{a}},{y}_{\stackrel{\sim }{a}}>\) and \(a,b,c,d>0\). Then, the score function of \(\stackrel{\sim }{a}\) can be calculated in accordance with Eq. (15):

$$ S\left( {\tilde{a}} \right) = \frac{1}{12}\left( {a + b + c + d} \right)\left( {2 + w_{{\tilde{a}}} - u_{{\tilde{a}}} - y_{{\tilde{a}}} } \right) S\left( {\tilde{a}} \right) \in \left[ {0,1} \right] $$
(15)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vafadarnikjoo, A., Badri Ahmadi, H., Liou, J.J.H. et al. Analyzing blockchain adoption barriers in manufacturing supply chains by the neutrosophic analytic hierarchy process. Ann Oper Res 327, 129–156 (2023). https://doi.org/10.1007/s10479-021-04048-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-021-04048-6

Keywords

Navigation