Log in

Diversity and structure of the winter rotifer assemblage in a shallow eutrophic northern temperate Lake Võrtsjärv

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

In the eutrophic Lake Võrtsjärv (Central Estonia, area 270 km2, mean depth 2.8 m) rotifers form ca. 90% of total abundance and 80% of biomass in winter zooplankton community. The winter rotifer assemblage was dominated by Polyarthra dolichoptera, both in abundance and in biomass. Synchaeta verrucosa and Keratella quadrata were the sub-dominants. Thus, winter rotifer community had low diversity and high dominance of a few species. This pattern probably refers to the period of extreme environmental conditions where the rotifer assemblage is composed of few well-adapted species, and the low diversity here was not indicating instability of community structure, but the scarcity of suitable niches. These community structure indices indicate that the winter rotifer assemblage of L. Võrtsjärv was very similar to autumn assemblage, but very different from the spring one. In winter, small raptors were the most important functional group. The second place is occupied by larger raptors. Marginal role of fine particle sedimentators, absence of suckers and high proportion of large raptors were contrasting features of the winter trophic structure in comparison with the other seasons. Changes have taken place in the winter rotifer assemblage in L. Võrtsjärv in 1990–2007. Against the background of diminishing rotifer abundance, the dominant species has become even more prevalent, and the diversity of the winter rotifer assemblage has decreased. Shifts in the community trophic structure were also observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arndt H (1993) Rotifers as predators on components of the microbial web (bacteria, heterotrophic flagellates, ciliates)—a review. Hydrobiologia 255(256):231–246

    Article  Google Scholar 

  • Berger WJH, Parker FL (1970) Diversity of planktonic Foraminifera in deep sea sediments. Science 168:1345–1347

    Article  PubMed  Google Scholar 

  • Berner-Fankhauser H (1983) Abundance, dynamics and succession of planktonic rotifers in Lake Biel, Switzerland. Hydrobiologia 104:349–352

    Article  Google Scholar 

  • Bērziņš B, Pejler B (1989a) Rotifer occurrence in relation to oxygen content. Hydrobiologia 183:165–172

    Article  Google Scholar 

  • Bērziņš B, Pejler B (1989b) Rotifer occurrence in relation to temperature. Hydrobiologia 175:223–231

    Article  Google Scholar 

  • Boveri MB, Quiros R (2002) Trophic interactions in Pampean shallow lakes: evaluation of silverside predatory effects in mesocosm experiments. Verh Int Ver Limnol 28:1274–1278

    CAS  Google Scholar 

  • Brandl Z, Fernando CH (1978) Prey selection by the cyclopoid copepods Mesocyclops edax and Cyclops vicinus. Verh Int Ver Limnol 20:2505–2510

    Google Scholar 

  • Carlin B (1943) Die Planktonrotatorien des Motalaström. Zur Taxonomie und Ökologie der Planktonrotatorien. Medd Lunds Univ Limnol Inst 5:1–256

    Google Scholar 

  • Cavalli L, Miquelis A, Chappaz R (2001) Combined effects of environmental factors and predator-prey interactions on zooplankton assemblages in five high alpine lakes. Hydrobiologia 455:127–135

    Article  Google Scholar 

  • Chen CY, Folt CL (2002) Ecophysiological responses to warming events by two sympatric zooplankton species. J Plankton Res 24:579–589

    Article  Google Scholar 

  • Dumont HJ (1977) Biotic factors in the population dynamics of rotifers. Arch Hydrobiol Beih Ergeb Limnol 8:98–122

    Google Scholar 

  • Easton J, Gophen M (2002) Trophic relations between zooplankton and bleaks (Acanthobrama spp.) in Lake Kinneret (Israel). Verh Int Ver Limnol 28:1258–1261

    Google Scholar 

  • Fradkin SC (1995) Effects of interference and exploitative competition from large-bodied cladocerans of rotifer community structure. Hydrobiologia 313(314):387–393

    Article  Google Scholar 

  • Gulati RD (1984) The zooplankton and its grazing as measures of trophy in the Loosdrecht Lakes. Verh Int Ver Limnol 22:863–867

    Google Scholar 

  • Haberman J, Virro T (2004) Zooplankton. In: Haberman J, Pihu E, Raukas A (eds) Lake Võrtsjärv. Estonian Encyclopaedia Publishers, Tallinn, pp 233–251

    Google Scholar 

  • Haberman J, Virro T, Krikmann K (2008) Zooplankton. In: Haberman J, Timm T, Raukas A (eds) Peipsi. Eesti Loodusfoto, Tartu, pp 271–290 (In Estonian)

    Google Scholar 

  • Hakkari L (1969) Zooplankton studies in the Lake Längelmävesi, South Finland. Ann Zool Fenn 6:313–326

    Google Scholar 

  • Herzig A (1979) The zooplankton of the open lake. In: Löffler H (ed) Neusiedlersee: the limnology of a shallow lake in Central Europe. Dr. W. Junk Publishers, The Hague, pp 281–335

    Google Scholar 

  • Herzig A (1987) The analysis of planktonic rotifer populations: a plea for long-term investigations. Hydrobiologia 147:163–180

    Article  Google Scholar 

  • Hillbricht-Ilkowska A (1983) Response of planktonic rotifers to the eutrophication process and to the autumnal shift of blooms in Lake Biwa, Japan. I. Changes in abundance and composition of rotifers. Jpn J Limnol 44:93–106

    Google Scholar 

  • Järvet A (2004) Hydrology of Lake Võrtsjärv. In: Haberman J, Pihu E, Raukas A (eds) Lake Võrtsjärv. Estonian Encyclopaedia Publishers, Tallinn, pp 105–139

    Google Scholar 

  • Kappes H, Mechenich C, Sinsch U (2000) Long-term dynamics of Asplanchna priodonta in Lake Windsborn with comments on the diet. Hydrobiologia 432:91–100

    Article  Google Scholar 

  • Karabin A, Ejsmont-Karabin J (1993) Pelagic zooplankton of the Great Masurian Lakes. In: Hydrobiological Station Mikołajki. Progress Report 1990–1991, Warszawa, pp 22–28

  • Kutikova LA (1970) Kolovratki fauny SSSR (Rotatoria). Nauka, Leningrad (In Russian)

    Google Scholar 

  • Manca MA, Colderoni A, Mosello R (1992) Limnological research in Lago Maggiore: studies on hydrochemistry and plankton. Mem Ist Ital Idrobiol 50:171–200

    Google Scholar 

  • May L (1980) On the ecology of Notholca squamula Müller in Loch Leven, Kinross, Scotland. Hydrobiologia 73:177–180

    Article  Google Scholar 

  • May L (1983) Rotifer occurrence in relation to water temperature in Loch Leven, Scotland. Hydrobiologia 104:311–315

    Article  Google Scholar 

  • Margalef R (1957) Information theory in ecology. Gen Syst 3:36–71

    Google Scholar 

  • Mezquita F, Miracle MR (1997) Chydorid assemblages in the sedimentary sequence of Lake La Cruz (Spain) subject to water level changes. Hydrobiologia 360:277–285

    Article  Google Scholar 

  • Nogrady T, Segers H (2002) Rotifera. Vol. 6: Asplanchnidae, Gastropodidae, Lindiidae, Microcodidae, Synchaetidae, Trochosphaeridae and Filinia. Guides to the identification of the microinvertebrates of the continental waters of the world 18. Backhuys, Leiden

    Google Scholar 

  • Nogrady T, Wallace RL, Snell TW (1993) Rotifera, vol. 1: biology, ecology and systematics. Guides to the identification of the microinvertebrates of the continental waters of the world 4. SPB Academic Publishing bv, The Hague

    Google Scholar 

  • Nõges P, Kägu M, Nõges T (2007) Role of climate and agricultural practice in determining matter discharge into large, shallow Lake Võrtsjärv, Estonia. Hydrobiologia 581:125–134

    Article  Google Scholar 

  • Nõges P, Laugaste R, Nõges T (2004) Phytoplankton. In: Haberman J, Pihu E, Raukas A (eds) Lake Võrtsjärv. Estonian Encyclopaedia Publishers, Tallinn, pp 217–231

    Google Scholar 

  • Oltra R, Alfonso MT, Sahuquillo M, Miracle MR (2001) Increase of rotifer diversity after sewage diversion in the hypertrophic lagoon, Albufera of Valencia, Spain. Hydrobiologia 446(447):213–220

    Article  Google Scholar 

  • Paul AJ, Schindler DW (1994) Regulation of rotifers by predatory copepods (subgenus Hesperodiaptomus) in lakes of Canadian Rocky Mountains. Can J Fish Aquat Sci 51:2520–2528

    Article  Google Scholar 

  • Pourriot R (1977) Food and feeding habits of Rotifera. Arch Hydrobiol Beih Ergeb Limnol 8:243–260

    Google Scholar 

  • Ruttner-Kolisko A (1977a) Population dynamics of rotifers as related to climatic conditions in Lunzer Obersee and Untersee. Arch Hydrobiol Beih Ergeb Limnol 8:88–93

    Google Scholar 

  • Ruttner-Kolisko A (1977b) Suggestions for biomass calculation of plankton rotifers. Arch Hydrobiol Beih Ergeb Limnol 8:71–76

    Google Scholar 

  • Sanoamuang L-O (1993) The effect of temperature on morphology, life history and growth rate of Filinia terminalis (Plate) and Filinia cf. pejleri Hutchinson in culture. Freshw Biol 30:257–267

    Article  Google Scholar 

  • SAS Institute Inc (1999) SAS online doc, Version 8. SAS Institute Inc, Cary

    Google Scholar 

  • Swadling KM, Pienitz R, Nogrady T (2000) Zooplankton community composition of lakes in the Yukon and Northwest Territories (Canada): relationships to physical and chemical limnology. Hydrobiologia 431:211–224

    Article  Google Scholar 

  • Špoljar M, Habdija I, Primc-Habdija B, Sipos L (2005) Impact of environmental variables and food availability on rotifer assemblage in the karstic barrage Lake Visovac (Krka River, Croatia). Int Rev Hydrobiol 90:555–579

    Article  Google Scholar 

  • Tammert H, Kisand V (2004) Bacterioplankton. In: Haberman J, Pihu E, Raukas A (eds) Lake Võrtsjärv. Estonian Encyclopaedia Publishers, Tallinn, pp 207–215

    Google Scholar 

  • Telesh IV (1993) The effect of fish on planktonic rotifers. Hydrobiologia 255(256):289–296

    Article  Google Scholar 

  • Tuvikene L, Kisand A, Tõnno I, Nõges P (2004) Chemistry of lake water and bottom sediments. In: Haberman J, Pihu E, Raukas A (eds) Lake Võrtsjärv. Estonian Encyclopaedia Publishers, Tallinn, pp 89–102

    Google Scholar 

  • Ventelä A-M, Saarikari V, Vuorio K (1998) Vertical and seasonal distributions of micro-organisms, zooplankton and phytoplankton in a eutrophic lake. Hydrobiologia 363:229–240

    Article  Google Scholar 

  • Walz N (1997) Rotifer life history strategies and evolution in freshwater plankton communities. In: Streit B, Städler T, Lively CM (eds) Evolutionary ecology of freshwater animals. Birkhäuser Verlag, Basel, pp 119–149

    Google Scholar 

  • Walz N, Elster H-J, Mezger M (1987) The development of the rotifer community structure in Lake Constance during its eutrophication. Arch Hydrobiol 74:452–487

    Google Scholar 

  • Zingel P, Haberman J (2008) A comparison of zooplankton densities and biomass in Lakes Peipsi and Võrtsjärv (Estonia): rotifers and crustaceans versus ciliates. Hydrobiologia 599:153–159

    Article  Google Scholar 

Download references

Acknowledgements

The research was supported by the Estonian target financed project SF 0170006s08. In this study, the data of the Estonian State monitoring programme were used. The contribution of the anonymous referees is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taavi Virro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Virro, T., Haberman, J., Haldna, M. et al. Diversity and structure of the winter rotifer assemblage in a shallow eutrophic northern temperate Lake Võrtsjärv. Aquat Ecol 43, 755–764 (2009). https://doi.org/10.1007/s10452-009-9276-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-009-9276-1

Keywords

Navigation