Log in

A comparison of zooplankton densities and biomass in Lakes Peipsi and Võrtsjärv (Estonia): rotifers and crustaceans versus ciliates

  • ELLS 2007
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The abundance and biomass of ciliates, rotifers, cladocerans and copepods were studied in Lake Peipsi and Lake Võrtsjärv, both of which are shallow, turbid and large. Our hypothesis was that in a large shallow eutrophic lake, the ciliates could be the most important zooplankton group. The mean metazooplankton biomass was higher in Peipsi than in Võrtsjärv (mean values and SD, 1.8 ± 0.7 and 1.3 ± 0.6 mg WM l−1). In Peipsi, the metazooplankton biomass was dominated by filtrators that feed on large-sized phytoplankton and are characteristic of oligo-mesotrophic waters. In Võrtsjärv, the metazooplankton was dominated by species characteristic of eutrophic waters. The planktonic ciliates in both lakes were dominated by oligotrichs. The biomass of ciliates was much greater in Võrtsjärv (mean 2.3 ± 1.4 mg WM l−1) than in Peipsi (0.1 ± 0.08 mg WM l−1). Ciliates formed about 60% of the total zooplankton biomass in Võrtsjärv but only 6% in Peipsi. Thus, the food chains in the two lakes differ: a grazing food chain in Peipsi and a detrital food-chain in Võrtsjärv. Consequently, top-down control of phytoplankton can be assumed to be much more important in Peipsi than in Võrtsjärv. When the detrital food chain prevails, the planktonic ciliates become the most important zooplankton group in shallow, eutrophic and large lake. Neglecting protozooplankton can result in serious underestimates of total zooplankton biomass since two-thirds of the zooplankton biomass in Võrtsjärv comprises ciliates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reill & F. Thingstad, 1983. The ecological role of water-column microbes in the sea. Marine Ecology Progress Series 10: 257–263.

    Article  Google Scholar 

  • Balushkina, E. V. & G. G. Winberg, 1979. Relation between body mass and length in planktonic animals. In Winberg, G. G. (ed.), Obshchie Osnovy Izucheniya Vodnykh Ekosistem. Nauka, Leningrad: 169–172. (In Russian).

    Google Scholar 

  • Beaver, J. R. & T. L. Crisman, 1982. The trophic response of ciliated protozoans in freshwater lakes. Limnology and Oceanography 27: 246–253.

    Google Scholar 

  • Callieri, C. & S. Heinimaa, 1997. Microbial loop in the large subalpine lakes. Memorie dell’Istituto Italiano di Idrobiologia 56: 143–156.

    Google Scholar 

  • Carrick, H. J. & G. L. Fahnenstiel, 1990. Planktonic protozoa in Lakes Huron and Michigan: seasonal abundance and composition of ciliates and dinoflagellates. Journal of Great Lakes Research 16: 319–329.

    Google Scholar 

  • Finlay, B. J., 1982. Procedures for the isolation, cultivation and identification of protozoa. In Burns, R. G. & J. H. Slater (eds.), Experimental Microbial Ecology. Blackwell Scientific Publications, Oxford: 44–65.

    Google Scholar 

  • Gates, M. A. & U. T. Lewg, 1984. Contribution of ciliated protozoa to the planktonic biomass in a series of Ontario lakes, quantitative estimates and dynamical relationships. Journal of Plankton Research 6: 443–456.

    Article  Google Scholar 

  • Gifford, D. J., 1991. The protozoan-metazoan trophic link in pelagic ecosystems. Journal of Protozoology 38: 81–86.

    Google Scholar 

  • Haberman, J., 1998. Zooplankton of Lake Võrtsjärv. Limnologica 28: 49–65.

    Google Scholar 

  • Haberman, J., 2001. Zooplankton. In Pihu, E. & J. Haberman (eds), Lake Peipsi: Flora and Fauna. Sulemees, Tartu: 50–68.

    Google Scholar 

  • Jeppesen, E., J. P. Jensen, M. Sondergaard, T. Lauridsen & F. Landkildehus, 2000. Trophic structure, species richness and biodiversity in Danish lakes: changes along phosphorus gradient. Freshwater Biology 45: 201–218.

    Article  CAS  Google Scholar 

  • Järvalt, A., A. Kangur, K. Kangur, P. Kangur & E. Pihu, 2004. Fishes and fisheries management. In Haberman, J., E. Pihu & A. Raukas (eds.), Lake Võrtsjärv. Estonian Encyclopaedia Publishers Ltd, Tallinn: 335–345.

    Google Scholar 

  • Karabin, A., 1985. Pelagic zooplankton (Rotatoria, Crustacea) variation in the process of lake eutrophication. I. Structural and quantitative features. Ekologia Polska 33: 567–616.

    Google Scholar 

  • Laybourn-Parry, J., 1992. Protozoan Plankton Ecology. Chapman & Hall, Ltd., London: 231.

    Google Scholar 

  • Müller, H., A. Schöne, R. M. Pinto-Coelho, A. Schweizer & T. Weisse, 1991. Seasonal succession of ciliates in Lake Constance. Microbial Ecology 21: 119–138.

    Article  Google Scholar 

  • Nõges, T., J. Haberman, H. Tammert, M. Timm, I. Ott & P. Nõges, 1992. Ecological relations of main plankton components in the pelagial of Lake Peipsi (Peipus). Proceedings of the Estonian Academy of Sciences. Ecology 2: 137–155.

    Google Scholar 

  • Nõges, T., J. Haberman, M. Timm & P. Nõges, 1993. The seasonal dynamics and trophic relations of the plankton components in lake Peipsi (Peipus). Internationale Revue der gesamten Hydrobiologie 78: 513–519.

    Article  Google Scholar 

  • Nõges, T., V. Kisand, P. Nõges, A. Põllumäe, L. Tuvikene, & P. Zingel, 1998. Plankton seasonal dynamics and its controlling factors in shallow polymictic eutrophic lake Võrtsjärv, Estonia. Internationale Revue der gesamten Hydrobiologie 83: 279–296.

    Google Scholar 

  • Nõges, T., J. Haberman, A. Kangur, K. Kangur, P. Kangur, H. Künnap, H. Timm, P. Zingel & P. Nõges, 2004. Food webs in Lake Võrtsjärv. In Haberman, J., E. Pihu & A. Raukas (eds), Lake Võrtsjärv. Estonian Encyclopaedia Publishers Ltd, Tallinn: 335–345.

    Google Scholar 

  • Pihu, E. & A. Kangur, 2001. Fishes and fisheries management. In Pihu, E. & J. Haberman (eds), Lake Peipsi: Flora and Fauna. Sulemees, Tartu: 100–111.

    Google Scholar 

  • Ruttner-Kolisko, A., 1977. Suggestion for biomass calculation of planktonic rotifers. Archiv für Hydrobiologie 8: 71–76.

    Google Scholar 

  • Sanders, R. W., K. G. Porter, S. J. Bennett & A. E. DeBiase, 1989. Seasonal patterns of bacterivory by flagellates, ciliates, rotifers, and cladocerans in a freshwater planktonic community. Limnology and Oceanography 34: 673–687.

    Article  Google Scholar 

  • Schönberger, M., 1994. Planktonic ciliated protozoa of Neusiedler See (Austria/Hungary)—a comparison between the turbid open lake and a reedless brown-water pond. Marine Microbial Food Webs 8: 251–263.

    Google Scholar 

  • Sherr, E. B., & B. F. Sherr, 1984. Role of heterotrophic protozoa in carbon, energy flow in aquatic ecosystems. In Klug, M. J. & C. A. Reddy (eds), Current Perspectives in Microbial Ecology. American Society for Microbiology, Washington: 412–423.

    Google Scholar 

  • Starast, H., A. Milius, T. Möls & A. Lindpere, 2001. Hydrochemistry of lake peipsi. In Nõges, T. (ed), Lake Peipsi: Meteorology, Hydrology, Hydrochemistry. Sulemees, Tartu: 97–131.

    Google Scholar 

  • Taylor, W. D. & M. L. Heynen, 1987. Seasonal and vertical distribution of Ciliophora in Lake Ontario. Canadian Journal of Fisheries and Aquatic Sciences 44: 2185–2191.

    Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommung der quaatitativen Phytoplanktonmethodik. Mitteilung internationale Vereinigung für Limnologie 9: 1–38.

    Google Scholar 

  • Vinni, M., J. Lappalainen, T. Malinen & H. Peltonen, 2004. Seasonal bottlenecks in diet shifts and growth of smelt in a large eutrophic lake. Journal of Fish Biology 64: 567–579.

    Article  Google Scholar 

  • Wickham, S. A. & J. J. Gilbert, 1993. The comparative importance of competition and predation by Daphnia on ciliated protists. Archiv für Hydrobiologie 126: 289–313.

    Google Scholar 

  • Zingel, P., H. Agasild, T. Nõges & V. Kisand, 2007. Ciliates are the dominant grazers on pico- and nanoplankton in a shallow, naturally highly eutrophic lake. Microbial Ecology 53: 134–142.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the staff of the Võrtsjärv Centre for Limnology for valuable help in our study. Funding for this research was provided by Estonian target funding projects 0370208s98 and 0362483s03, by Estonian Science Foundation grants No. 2015, 2017, 4080, 5425 and by European Commission projects (contract EVK1-CT-1999-39 and contract EVK1-CT-2000-00076).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priit Zingel.

Additional information

Guest editors: T. Nõges, R. Eckmann, K. Kangur, P. Nõges, A. Reinart, G. Roll, H. Simola and M. Viljanen

European Large Lakes—Ecosystem changes and their ecological and socioeconomic impacts

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zingel, P., Haberman, J. A comparison of zooplankton densities and biomass in Lakes Peipsi and Võrtsjärv (Estonia): rotifers and crustaceans versus ciliates. Hydrobiologia 599, 153–159 (2008). https://doi.org/10.1007/s10750-007-9186-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-007-9186-y

Keywords

Navigation