Log in

Experimental and Theoretical Brownian Dynamics Analysis of Ion Transport During Cellular Electroporation of E. coli Bacteria

  • S.I.: Electroporation for Medical Applications and Biotechnology
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Escherichia coli bacterium is a rod-shaped organism composed of a complex double membrane structure. Knowledge of electric field driven ion transport through both membranes and the evolution of their induced permeabilization has important applications in biomedical engineering, delivery of genes and antibacterial agents. However, few studies have been conducted on Gram-negative bacteria in this regard considering the contribution of all ion types. To address this gap in knowledge, we have developed a deterministic and stochastic Brownian dynamics model to simulate in 3D space the motion of ions through pores formed in the plasma membranes of E. coli cells during electroporation. The diffusion coefficient, mobility, and translation time of Ca2+, Mg2+, Na+, K+, and Cl ions within the pore region are estimated from the numerical model. Calculations of pore’s conductance have been validated with experiments conducted at Gustave Roussy. From the simulations, it was found that the main driving force of ionic uptake during the pulse is the one due to the externally applied electric field. The results from this work provide a better understanding of ion transport during electroporation, aiding in the design of electrical pulses for maximizing ion throughput, primarily for application in cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Abrahamson, A. A. Born–Mayer-type interatomic potential for neutral ground-state atoms with Z = 2 to Z = 105. Phys. Rev. 178:76–79, 1969.

    Article  CAS  Google Scholar 

  2. Alegun, O., A. Pandeya, J. Cui, I. Ojo, and Y. Wei. Donnan potential across the outer membrane of Gram-negative bacteria and its effect on the permeability of antibiotics. Antibiotics (Basel). 10:701, 2021.

    Article  CAS  PubMed  Google Scholar 

  3. Basavaraju, M., and B. S. Gunashree. Escherichia coli: an overview of main characteristics. In: Escherichia coli—Old and New Insights. London: IntechOpen, 2023.

  4. Bayer, M. E. Zones of membrane adhesion in the cryofixed envelope of Escherichia coli. J. Struct. Biol. 107:268–280, 1991.

    Article  CAS  PubMed  Google Scholar 

  5. Berendsen, H. J. Molecular dynamics simulations: the limits and beyond. In: Computational Molecular Dynamics: Challenges, Methods, Ideas. Lecture Notes in Computational Science and Engineering. Berlin: Springer, 1999.

  6. Birdsall, C. K., and A. B. Langdon. Plasma Physics via Computer Simulations. New York: McGraw-Hill Book Company, 1985.

    Google Scholar 

  7. Bonzanni, M., S. L. Payne, M. Adelfio, D. L. Kaplan, M. Levin, and M. J. Oudin. Defined extracellular ionic solution to study and manipulate the cellular resting membrane potential. Biol. Open. 9(1):bio048553, 2020.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Catipovic, M. A., P. M. Tyler, J. G. Trapani, and A. R. Carter. Improving the quantification of Brownian motion. Am. J. Phys. 81:485–491, 2013.

    Article  CAS  Google Scholar 

  9. Chen, J. C., and A. S. Kim. Brownian Dynamics, Molecular Dynamics, and Monte Carlo modeling of colloidal systems. Adv. Colloid Interface Sci. 112:159–173, 2004.

    Article  CAS  PubMed  Google Scholar 

  10. Chini, T. K., and D. Ghose. On the interaction potential in low energy ion scattering. Nucl. Instrum. Methods Phys. Res. B. 42:293–294, 1989.

    Article  Google Scholar 

  11. Chung, S., T. W. Allen, M. Hoyles, and S. Kuyucak. Permeation of ions across the potassium channel: Brownian dynamics studies. Phys. Rev. E. 77:2117–2155, 1999.

    Google Scholar 

  12. Chung, S., M. Hoyles, T. Allen, and S. Kuyucak. Study of ionic currents across a model membrane channel using Brownian dynamics. Biophys. J. 75:793–809, 1998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Corry, B., T. W. Allen, S. Kuyukak, and S.-H. Chung. Mechanisms of permeation and selectivity in calcium channels. Biophys. J. 80:195–214, 2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cory, B., M. Hoyles, T. W. Allen, M. Walker, S. Kuyucak, and S. Chung. Reservoir boundaries in Brownian dynamics simulations of ion channels. Biophys. J. 82:1975–1984, 2002.

    Article  Google Scholar 

  15. DeBruin, K. A., and W. Krassowska. Modeling electroporation in a single cell. I. Effects of field strength and rest potential. Biophys. J. 77:1213–1224, 1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Diem, M., and C. Oostenbrink. The effect of different cutoff schemes in molecular simulations of proteins. J. Comput. Chem. 41(32):2740–2749, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Einstein, A. On the movement of small particles suspended in a stationary liquid demanded by the molecular kinetic theory of heat (original in German). Ann. Phys. 17:549–560, 1905.

    Article  CAS  Google Scholar 

  18. El-Hag, A., and S. H. Jayaram. Effect of biological cell size and shape on killing efficiency of pulsed electric field. In: 2008 IEEE International Conference on Dielectric Liquids, 2008.

  19. Eynard, N., F. Rodriguez, J. Trotard, and J. Tessie. Electrooptics studies of Escherichia coli electropulsation: orientation, permeabilization, and gene transfer. Biophys. J. 75:2587–2596, 1998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gapsys, V., and B. Groot. On the importance of statistics in molecular simulations for thermodynamics, kinetics and simulation box size. eLife. 9:e57589, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gothelf, A., L. M. Mir, and J. Gehl. Electrochemotherapy: results of cancer treatment using enhanced delivery of bleomycin by electroporation. Cancer Treat. Rev. 29:371–387, 2003.

    Article  CAS  PubMed  Google Scholar 

  22. Graham, L. L., T. J. Beveridge, and N. Nanninga. Periplasmic space and the concept of the periplasm. Trends Biochem. Sci. 16:328–329, 1991.

    Article  CAS  PubMed  Google Scholar 

  23. Green, M. S. Markoff random processes and the statistical mechanics of time-dependent phenomena. II. Irreversible processes in fluids. J. Chem. Phys. 22:398–413, 1954.

    Article  CAS  Google Scholar 

  24. Hastings, C. Approximations for Digital Computers. Princeton: Princeton University Press, 1955.

    Book  Google Scholar 

  25. Ho, S. Y., and G. S. Mittal. Electroporation of cell membranes: a review. Crit. Rev. Biotechnol. 16:349–362, 1996.

    Article  CAS  PubMed  Google Scholar 

  26. Hoejholt, K. L., T. Muzic, S. D. Jensen, L. T. Dalgaard, M. Bilgin, J. Nylandsted, T. Heimburg, S. K. Frandsen, and J. Gehl. Calcium electroporation and electrochemotherapy for cancer treatment: importance of cell membrane composition investigated by lipidomics, calorimetry and in vitro efficacy. Sci. Rep. 9:4758, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hoyles, M., S. Kuyucak, and S. Chung. Computer simulation of ion conductance in membrane channels. Phys. Rev. E. 58:3654–3661, 1998.

    Article  CAS  Google Scholar 

  28. Hu, Q., and R. P. Joshi. Comparative evaluation of transmembrane ion transport due to monopolar and bipolar nanosecond, high-intensity electroporation pulses based on full three-dimensional analyses. J. Appl. Phys.122:034701, 2017.

    Article  Google Scholar 

  29. Idalia, V.-M. N., and F. Bernardo. Escherichia coli as a model organism and its application in biotechnology. In: Escherichia coli—Recent Advances on Physiology, Pathogenesis and Biotechnological Applications. London: InTechOpen, 2017.

  30. Im, W. S., S. Seefeld, and B. Roux. A grand canonical Monte Carlo-Brownian dynamics algorithm for simulating ion channels. Biophys. J. 79:788–801, 2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Joshi, R. P., Q. Hu, R. Aly, K. H. Schoenbach, and H. P. Hjalmarson. Self-consistent simulations of electroporation dynamics in biological cells subjected to ultrashort electrical pulses. Phys. Rev. E.64:011913, 2001.

    Article  CAS  Google Scholar 

  32. Kestin, J., M. Sokolov, and W. Wakeham. Viscosity of liquid water in the range − 8 °C to 150 °C. J. Phys. Chem. Ref. Data. 7:941, 1978.

    Article  CAS  Google Scholar 

  33. Kotnik, T., L. Rems, M. Tarek, and D. Miklavcic. Membrane electroporation and electropermeabilization: mechanisms and models. Annu. Rev. Biophys. 6:63–91, 2019.

    Article  Google Scholar 

  34. Krassowska, W., and P. D. Filev. Modeling electroporation in a single cell. Biophys. J. 92:404–417, 2007.

    Article  CAS  PubMed  Google Scholar 

  35. Kubo, R. Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn. 12:570–586, 1957.

    Article  Google Scholar 

  36. Lemons, D. S., and A. Gythiel. Paul Langevin’s 1908 paper “On the Theory of Brownian Motion” [“Sur la theorie du mouvement brownien,” C. R. Acad. Sci. (Paris) 145, 530–533 (1908)]. Am. J. Phys. 65:1079–1081, 1997.

    Article  Google Scholar 

  37. Leontiadou, H., A. E. Mark, and S. J. Marrink. Ion transport across transmembrane pores. Biophys. J. 92:4209–4215, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Levitt, D. G. Modeling of ion channels. J. Gen. Physiol. 113:789–794, 1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lide, D. R., and H. V. Kehiaian. CRC Handbook of Thermophysical and Thermochemical Data. Boca Raton: CRC Press, 1994.

    Google Scholar 

  40. Lo, C. J., M. C. Leake, T. Pilizota, and R. M. Berry. Nonequivalence of membrane voltage and ion-gradient as driving forces for the bacterial flagellar motor at low load. Biophys. J. 93:294–302, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lomize, A. L., I. D. Pogozheva, and H. I. Mosberg. Anisotropic solvent model of the lipid bilayer. 1. Parameterization of long-range electrostatics and first solvation shell effects. J. Chem. Inf. Model. 51:918–929, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lomize, A. L., I. D. Pogozheva, and H. I. Mosberg. Anisotropic solvent model of the lipid bilayer. 2. Energetics of insertion of small molecules, peptides, and proteins in membranes. J. Chem. Inf. Model. 51:930–946, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Miklavcic, D., and R. V. Davalos. Electrochemotherapy (ECT) and irreversible electroporation (IRE)—advanced techniques for treating deep-seated tumors based on electroporation. Biomed. Eng. Online.14:l1, 2015.

    Article  Google Scholar 

  44. Milo, R., and R. Phillips. Cell Biology by the Numbers. New York: Garland Science, 2015.

    Book  Google Scholar 

  45. Moran, J. L., N. N. Dingari, P. A. Garcia, and C. R. Buie. Numerical study of the effect of soft layer properties on bacterial electroporation. Bioelectrochemistry. 123:261–272, 2018.

    Article  CAS  PubMed  Google Scholar 

  46. Neu, J., and W. Krassowska. Modeling postshock evolution of large electropores. Phys. Rev. E.67:021915, 2003.

    Article  Google Scholar 

  47. Neu, J., K. Smith, and W. Krassowska. Electrical energy required to form large conducting pores. Bioelectrochemistry. 60:107–114, 2003.

    Article  CAS  PubMed  Google Scholar 

  48. Papoulis, A. Probability, Random Variables, and Stochastic Processes. New York: McGraw Hill, 1984.

    Google Scholar 

  49. Piggot, T., D. Holdbrook, and S. Khalid. Electroporation of the E. coli and S. aureus membranes: Molecular Dynamics simulations of complex bacterial membranes. J. Phys. Chem. B. 115:13381–13388, 2011.

    Article  CAS  PubMed  Google Scholar 

  50. Pluhackova, K., and R. A. Böckmann. Biomembranes in atomistic and coarse-grained simulations. J. Phys. Condens. Matter.27:323103, 2015.

    Article  PubMed  Google Scholar 

  51. Pucihar, G., T. Kotnik, D. Miklavcic, and J. Tessie. Kinetics of transmembrane transport of small molecules into electropermeabilized cells. Biophys. J. 95:2837–2848, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Riley, M. Correlates of smallest sizes for microorganisms. In: Size Limits of Very Small Microorganisms: Proceedings of a Workshop, 1999.

  53. Rosazza, C., S. Haberl Meglic, A. Zumbusch, M. Rols, and D. Miklavcic. Gene electrotransfer: a mechanistic perspective. Curr. Gene Ther. 16:98–129, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sabah, N. H. Rectification in biological membranes. IEEE EMB Mag. 19(1):106–113, 2000.

    CAS  Google Scholar 

  55. Sandblom, J., P. George, and J. Galvanovskis. The frequency response of ion channel currents in a combined diffusion and barrier type model. J. Theor. Biol. 176:153–160, 1995.

    Article  CAS  PubMed  Google Scholar 

  56. Sansom, M., I. Shrivastaya, J. Bright, J. Tate, C. Capener, and P. Biggin. Potassium channels: structures, models, simulations. Biochim. Biophys. Acta Biomembr. 1565:11, 2002.

    Article  Google Scholar 

  57. Saulis, G., and R. Saule. Size of the pores created by an electric pulse: microsecond vs millisecond pulses. Biochim. Biophys. Acta. 3032–3039:2012, 1818.

    Google Scholar 

  58. Shen, L. C., and J. A. Kong. Applied Electromagnetism. Boston: PWS Publishers, 1987.

    Google Scholar 

  59. Smythe, W. R. Static and Dynamic Electricity. New York: McGraw-Hill, 1968.

    Google Scholar 

  60. Spanggaard, I., M. Snoj, A. Cavalcanti, C. Bouquet, G. Sersa, C. Robert, M. Cemazar, E. Dam, B. Vasseur, P. Attali, L. M. Mir, and J. Gehl. Gene electrotransfer of plasmid antiangiogenic metargidin peptide (AMEP) in disseminated melanoma: safety and efficacy results of a phase I first-in-man study. Hum. Gene Ther. Clin. Dev. 24:99–107, 2013.

    Article  CAS  PubMed  Google Scholar 

  61. Swope, W. C., H. C. Andersen, P. H. Berens, and K. R. Wilson. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters. J. Chem. Phys. 76:648, 1982.

    Article  Google Scholar 

  62. Sözer, E. B., S. Haldar, P. S. Blank, F. Castellani, P. T. Vernier, and J. Zimmerberg. Dye transport through bilayers agrees with lipid electropore molecular dynamics. Biophys. J. 119:1724–1734, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Tinkle, M. D., and S. E. Barlow. Image charge forces inside conducting boundaries. J. Appl. Phys. 90:1612–1624, 2001.

    Article  CAS  Google Scholar 

  64. Tinkle, M. D., and S. E. Barlow. Workshop on Non-neutral Plasmas, 2001.

  65. Turq, P., F. Lantelme, and H. L. Firedman. Brownian dynamics: its application to ionic solutions. J. Chem. Phys. 66:3039–3044, 1977.

    Article  CAS  Google Scholar 

  66. Van Gunsteren, W. F., and H. J. Berendsen. Algorithms for Brownian dynamics. Mol. Phys. 45:637–647, 1982.

    Article  Google Scholar 

  67. Verlet, L. Computer, “Experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 159:98–103, 1967.

    Article  CAS  Google Scholar 

  68. Weaver, J. C. Electroporation of cells and tissues. IEEE Trans. Plasma Sci. 28:24–33, 2000.

    Article  CAS  Google Scholar 

  69. Weaver, J. C., K. C. Smith, A. T. Esser, R. S. Son, and T. R. Gowrishankar. A brief overview of electroporation pulse strength-duration space: a region where additional intracellular effects are expected. Bioelectrochemistry. 87:236–243, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. **ang, X., P. B. Grosshans, and A. G. Marshall. Image charge induced ion cyclotron orbital frequency shift for orthorhombic and cylindrical FT-ICR ion traps. Int. J. Mass Spectrom. Ion Process. 125:33–43, 1993.

    Article  CAS  Google Scholar 

  71. Young, H., and R. Freedman. Sears and Semansky’s University Physics. New York: Addison Wesley, 1996.

    Google Scholar 

Download references

Acknowledgments

This research work was funded by Consejo Nacional de Ciencia y Tecnología (CONACYT-Paraguay), Grant Number 14-INV-189. The authors would like to thank the Gustave Roussy Institute for allowing the use of equipment, cells and reactants which were used in conducting the experimental validation of the model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan A. González-Cuevas.

Ethics declarations

Conflict of interest

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Additional information

Associate Editor Rafael Vidal Davalos oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Derivations of Induced Image Charges at the Pores

Green’s function of the interior of a cylinder of radius ρ0 and length 2z0 [63, 64] is given by:

$$G\left(\rho ,\mathrm{\varnothing },z,{\rho }^{{{\prime}}},{\mathrm{\varnothing }}^{{{\prime}}},z{^{\prime}}\right)=\frac{1}{2\pi {\varepsilon }_{0}{\rho }_{0}}\sum_{m=0}^{\infty }\sum_{n=1}^{\infty }\left\{\frac{{\epsilon }_{m}\mathrm{cos}\left[m\left(\mathrm{\varnothing }-\mathrm{\varnothing^ {\prime}}\right)\right]{J}_{m}\left({j}_{m,n}\rho \right)}{}\right.\frac{{J}_{m}\left({j}_{m,n}\rho{^{\prime}}\right)}{{J}_{m,n}{J}_{m+1}^{2}\left({j}_{m,n}\right)}\left.\frac{\mathrm{sinh}\left[{j}_{m,n}\left(\alpha +z<\right)\right]\mathrm{sinh}\left[{j}_{m,n}\left(\alpha -z>\right)\right]}{\mathrm{sinh}\left({2j}_{m,n}\alpha \right)}\right\}$$
(42)

where \({\epsilon }_{m}=2-{\delta }_{m,0}\). \({\delta }_{\mathrm{0,0}}=1\) , and \({\delta }_{m,0}=0\) otherwise. jm,n is the nth zero of the Bessel function Jm(x); \(\alpha ={z}_{0}/{\rho }_{0}\) is the aspect ratio of the cylinder. The ρ and z cylindrical coordinates are scaled by ρ0 and their origin is the center of the cylinder. The coordinate z< is the lesser of z and z′, and z> is the greater.

The z component on a charge q can be found by evaluating Green’s function G [Eq. (42)] at \(\rho ^{\prime}= \rho ,\varnothing ^{\prime}=\varnothing ,z^{\prime}=z\) and taking the gradient following Smythe [59]:

$${F}_{z}=-\frac{{q}^{2}\nabla G\left(\rho ,\varnothing ,z,{\rho }^{\prime},{\varnothing }^{\prime},{z}^{\prime}\right)}{2}=\frac{{q}^{2}}{2\pi {\varepsilon }_{0}{\rho }_{0}}\sum_{m=0}^{\infty }\sum_{n=1}^{\infty }\frac{{\epsilon }_{m}{{J}_{m}}^{2}\left({j}_{m,n}{\rho }^{\prime}\right)}{{J}_{m+1}^{2}\left({j}_{m,n}\right)}\frac{\mathrm{sinh}\left[{2j}_{m,n}{z}^{\prime}\right]}{\mathrm{sinh}\left[{2j}_{m,n}{\alpha }^{\prime}\right]}.$$
(43)

Since this approach yields a divergent series when calculating the radial force Fρ, a different technique by **ang et al. (**a93) is followed using an alternate form for the Green’s function:

$$G\left(\rho ,\varnothing ,z,{\rho }^{\prime},{\varnothing }^{\prime},z^{\prime}\right)=\frac{1}{2\pi {\varepsilon }_{0}{z}_{0}}\sum_{m=0}^{\infty }\sum_{n=1}^{\infty }\left.\left\{{\epsilon }_{m}\mathrm{cos}\left[m\left(\varnothing -\varnothing ^{\prime}\right)\right]\mathrm{sin}\left[\frac{n\pi \left(z+1\right)}{2}\right]\mathrm{sin}\left[\frac{n\pi \left(z^{\prime}+1\right)}{2}\right]{T}_{n}\left(\rho ,\rho ^{\prime}\right)\right.\right\},$$
(44)

where

$${T}_{n}\left(\rho ,\rho ^{\prime}\right)=\frac{{I}_{m}\left(\frac{n\pi \rho >}{2}\right)}{{I}_{m}\left(\frac{n\pi }{2\alpha }\right)}\left[{I}_{m}\left(\frac{n\pi }{2\alpha }\right){K}_{m}\left(\frac{n\pi \rho <}{2}\right)-{K}_{m}\left(\frac{n\pi }{2\alpha }\right){I}_{m}\left(\frac{n\pi \rho <}{2}\right)\right].$$
(45)

\({I}_{m}\) y \({K}_{m}\) are hyperbolic Bessel functions. Scaling is by z0. The charge distribution σ on the cylinder surface S can be found from Green’s function [Eq. (44)]:

$$\sigma =-{\varepsilon }_{0}q\nabla G\left(\rho ,\varnothing ,z,{\rho }^{\prime},{\varnothing }^{\prime},{z}^{\prime}\right),$$
(46)

where the gradient is taken with respect to \(\rho ,\varnothing ,z\). Using the identity

$${I}_{m}\left(u\right){K}_{m}^{\prime}\left(u\right)- {K}_{m}\left(u\right){I}_{m}^{\prime}\left(u\right)=-1/u,$$
(47)

the surface charge on the cylinder is:

$${\sigma }_{\mathrm{c}}=\frac{-q}{2\pi {\varepsilon }_{0}{z}_{0}}\sum_{m=0}^{\infty }\sum_{n=1}^{\infty }\left.\left\{{\epsilon }_{m}\mathrm{cos}\left[m\left(\varnothing -\varnothing ^{\prime}\right)\right]\mathrm{sin}\left[\frac{n\pi \left(z+1\right)}{2}\right]\mathrm{sin}\left[\frac{n\pi \left(z^{\prime}+1\right)}{2}\right]\frac{{I}_{m}\left(\frac{n\pi \rho ^{\prime}}{2}\right)}{{I}_{m}\left(\frac{n\pi }{2\alpha }\right)}\right.\right\}.$$
(48)

The surface charge creates a pressure directed outwards of the conducting membrane pore:

$$p=\frac{{\sigma }^{2}}{2{\varepsilon }_{0}}.$$
(49)

Thus, the force on the ion is given by:

$${F}_{\rho }={\int }_{S}\frac{{\sigma }^{2}\mathrm{d}a}{2{\varepsilon }_{0}}.$$
(50)

The radial force on the ion from the above equation is:

$${F}_{\rho }=-\frac{{\rho }_{0}}{4\pi {\varepsilon }_{0}}{\int }_{0}^{{z}_{0}}\mathrm{d}z{\int }_{0}^{2\pi }\mathrm{d}\varnothing 2\pi {\sigma }^{2}\mathrm{cos}\left(\varnothing -{\varnothing }^{\prime}\right).$$
(51)

Considering the identity:

$${\int }_{0}^{2\pi }\mathrm{cos}\left(x\right)\mathrm{cos}\left(mx\right)\mathrm{cos}\left(nx\right)\mathrm{d}x=\left\{\begin{array}{ll}\pi & {\text{for}}\, m=0\, {\text{and}}\, n=1,\\ \pi & {\text{for}}\, m=1 \,{\text{and}}\, n=0,\\ \frac{\pi }{2} & {\text{for}} m-n=\pm 1\, {\text{and}}\, n,m>0,\\ 0 &{\text{otherwise}},\end{array}\right.$$
(52)

the radial force becomes [70]:

$${F}_{\rho }=\frac{{q}^{2}}{2\pi {\varepsilon }_{0}{{\rho }_{0}z}_{0}}\sum_{m=0}^{\infty }\sum_{n=1}^{\infty }\left.\left\{{\mathrm{sin}}^{2}\left[\frac{n\pi \left(z+1\right)}{2}\right]\mathrm{sin}\left[\frac{n\pi \left(z^{\prime}+1\right)}{2}\right]\frac{{I}_{m}\left(\frac{n\pi \rho ^{\prime}}{2}\right){I}_{m+1}\left(\frac{n\pi \rho ^{\prime}}{2}\right)}{{I}_{m}\left(\frac{n\pi }{2\alpha }\right){I}_{m+1}\left(\frac{n\pi }{2\alpha }\right)}\right.\right\}.$$
(53)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Cuevas, J.A., Argüello, R., Florentin, M. et al. Experimental and Theoretical Brownian Dynamics Analysis of Ion Transport During Cellular Electroporation of E. coli Bacteria. Ann Biomed Eng 52, 103–123 (2024). https://doi.org/10.1007/s10439-023-03353-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-023-03353-4

Keywords

Navigation