Log in

Acetic Acid Mitigates Salinity-Induced Toxic Effects in Wheat by Maintaining Photosynthetic Efficiency, Antioxidant Activities, Ionic Homeostasis, and Synthesis of Stress-Protection Hormones and Osmolytes

  • Original Article / Originalbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

Purpose: Salinity stress (SS) is a major problem that adversely affects crop growth and productivity across the globe. Acetic acid (AA) has emerged as an essential chemical to induce plant stress tolerance. However, the role of AA in plants under SS is not well explored. Therefore, the present study was conducted to determine the effect of AA on growth, yield, ionic homeostasis, physiology, hormonal crosstalk, and antioxidant activities of wheat crop grown under SS. The study comprised different levels of SS (control [0 dS m−1], 7 dS m−1, and 14 dS m−1) and foliar spray of AA (control [water spray], 10 mM, and 20 mM). SS was imposed by mixing the salt into soil, whereas foliar application of AA was performed at the flag leaf stage. The results indicated that SS stress negatively affected the growth and yield of wheat crop by stimulating oxidative stress, which was associated with H2O2 (39.83%), malondialdehyde (MDA; 26.89%), and abscisic acid (ABA; 33.90%) accumulation; electrolyte leakage (EL; 54.70%); Na+ accumulation; and reduced gas exchange characteristics (photosynthetic rate, transpiration rate, stomatal conductance, and water-use efficiency [WUE]), relative water content (RWC; 34.53%), chlorophyll content, free amino acids (FAA; 32.38%), total soluble protein (TSP; 50.30%), indole acetic acid (IAA; 42.13%), gibberellic acid (GA), and nutrient uptake. However, foliar application of AA significantly improved the growth and yield of wheat crops owing to decreased MDA, H2O2, and ABA accumulation as well as EL. Acetic acid increased RWC, chlorophyll content, anthocyanin content, proline, soluble sugars TSP, FAA, IAA, GA, and the rate of photosynthesis and transpiration, plant WUE, and antioxidant activities (ascorbate peroxidase, catalase, peroxidase, and superoxide dismutase). In addition, application of AA reduced the massive entry of toxic ions (Na+ and Cl) while it increased the uptake of Ca2+, K+, Mg2+, N, and P, thus improved wheat growth and yield. These findings suggest that AA could mitigate SS in wheat crop by regulating K+ accumulation, gas exchange characteristics, and promoting the scavenging of reactive oxygen species by activating the antioxidant defense system and improving the synthesis and signaling of stress-protection hormones and osmolytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • AbdElgawad H, Zinta G, Hegab MM, Pandey R, Asard H, Abuelsoud W (2016) High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs. Front Plant Sci 7:276

    PubMed  PubMed Central  Google Scholar 

  • Abiala MA, Abdelrahman M, Burritt DJ, Tran LSP (2018) Salt stress tolerance mechanisms and potential applications of legumes for sustainable reclamation of salt-degraded soils. Land Degrada Dev 29:3812–3822

    Google Scholar 

  • Ahammed GJ, Xu W, Liu A, Chen S (2019) Endogenous melatonin deficiency aggravates high temperature-induced oxidative stress in Solanum lycopersicum L. Environ Exp Bot 161:303–311

    CAS  Google Scholar 

  • Ali AYA, Ibrahim MEH, Zhou G, Nimir NEA, Elsiddig AMI, Jiao X, Zhu G, Salih EGI, Suliman MSES, Elradi SBM (2021) Gibberellic acid and nitrogen efficiently protect early seedlings growth stage from salt stress damage in Sorghum. Sci Rep 11:1–11

    Google Scholar 

  • Arif Y, Singh P, Siddiqui H, Bajguz A, Hayat S (2020) Salinity induced physiological and biochemical changes in plants: an omic approach towards salt stress tolerance. Plant Physio Biochem 156:64–77

    CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1

    CAS  PubMed  PubMed Central  Google Scholar 

  • Asada K, Takahashi M (1987) Production and Scavenging of Active Oxygen in Chloroplasts. In: Kyle DJ, Osmond CB, Arntzen CJ (eds) Photoinhibition. Elsevier, Amsterdam, 227–287

    Google Scholar 

  • Ashraf M, Harris PJ (2013) Photosynthesis under stressful environments: an overview. Photosynt 51:163–190

    CAS  Google Scholar 

  • Baccari S, Elloumi O, Chaari-Rkhis A, Fenollosa E, Morales M, Drira N, Ben Abdallah F, Fki L, Munné-Bosch S (2020) Linking leaf water potential, photosynthesis and chlorophyll loss with mechanisms of photo-and antioxidant protection in juvenile olive trees Subjected to severe drought. Frontiers in Plant Science 11:614144

    PubMed  PubMed Central  Google Scholar 

  • Berríos J, Illanes A, Aroca G (2004) Spectrophotometric method for determining gibberellic acid in fermentation broths. Biotech Lett 26:67–70

    Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  • Breś W, Kleiber T, Markiewicz B, Mieloszyk E, Mieloch M (2022) The effect of NaCl stress on the response of lettuce (Lactuca sativa L.). Agronomy 12:244

    Google Scholar 

  • Canfora L, Bacci G, Pinzari F, Papa LG, Dazzi C, Benedetti A (2014) Salinity and bacterial diversity: to what extent does the concentration of salt affect the bacterial community in a saline soil? Plos One 9:e106662

    PubMed  PubMed Central  Google Scholar 

  • Chance B, Maehly A (1955) Assay of catalase and peroxidase in. In: Colowick SP, Kaplar NO (eds) Methods of enzymology 2: 764. Academic Press, New York

    Google Scholar 

  • Chandra P, Dhuli P, Verma P, Singh A, Choudhary M, Prajapat K, Rai A, Yadav R (2020) Culturable microbial diversity in the rhizosphere of different biotypes under variable salinity. Trop Ecol 61:291–300

    CAS  Google Scholar 

  • Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19:371–379

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dustgeer Z, Seleiman MF, Imran K, Chattha MU, Alhammad BA, Jalal RS, Refay Y, Hassan MU (2021) Glycine-betaine induced salinity tolerance in maize by regulating the physiological attributes, antioxidant defense system and ionic homeostasis. Notulae Bot Horti Agrobot Cluj Napo 49:12248–12248

    CAS  Google Scholar 

  • El-Bially ME, Saudy HS, El-Metwally IM, Shahin MG (2022b) Sunflower response to application of L‑ascorbate under thermal stress associated with different sowing dates. Gesunde Pflanz 74:87–96

    CAS  Google Scholar 

  • El-Metwally IM, Sadak MS, Saudy HS (2022) Stimulation effects of glutamic and 5‑aminolevulinic acids on photosynthetic pigments, physio-biochemical constituents, antioxidant activity, and yield of peanut. Gesunde Pflanz. https://doi.org/10.1007/s10343-022-00663-w

    Article  Google Scholar 

  • El–Bially ME, Saudy HS, Hashem FA, El-Gabry YAM, Shahin MG (2022a) Salicylic acid as a tolerance inducer of drought stress on sunflower grown in sandy soil. Gesunde Pflanz. https://doi.org/10.1007/s10343-021-00590-2

    Article  Google Scholar 

  • Fatima A, Hussain S, Hussain S, Ali B, Ashraf U, Zulfiqar U, Aslam Z, Al-Robai SA, Alzahrani FO, Hano C (2021) Differential morphophysiological, biochemical, and molecular responses of maize hybrids to salinity and alkalinity stresses. Agronomy 11:1150

    CAS  Google Scholar 

  • Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez MM, Seki M, Hiratsu K, Ohme-Takagi M, Shinozaki K, Yamaguchi-Shinozaki K (2005) AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell 17:3470–3488

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gopalakrishnan V, Burdman S, Jurkevitch E, Helman Y (2022) From the lab to the field: combined application of plant-growth-promoting bacteria for mitigation of salinity stress in melon plants. Agronomy 12:408

    CAS  Google Scholar 

  • Guan Y, Hu J, X‑j W, C‑x S (2009) Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. J Zhe Univ Sci B 10:427–433

    CAS  Google Scholar 

  • Hamilton P, Van Slyke D (1943) Amino acid determination with ninhydrin. J Biol Chem 150:231–250

    CAS  Google Scholar 

  • He Y, Zhu Z, Yang J, Ni X, Zhu B (2009) Grafting increases the salt tolerance of tomato by improvement of photosynthesis and enhancement of antioxidant enzymes activity. Environ Exp Bot 66:270–278

    CAS  Google Scholar 

  • Hmidi D, Abdelly C, H‑u‑R AAM, Messedi D (2018) Effect of salinity on osmotic adjustment, proline accumulation and possible role of ornithine-δ-aminotransferase in proline biosynthesis in Cakile maritima. Physiol Mol Biol Plants 24:1017–1033

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hossain MS, Abdelrahman M, Tran CD, Nguyen KH, Chu HD, Watanabe Y, Hasanuzzaman M, Mohsin SM, Fujita M, L‑SP T (2020) Insights into acetate-mediated copper homeostasis and antioxidant defense in lentil under excessive copper stress. Environ Pollut 258:113544

    CAS  PubMed  Google Scholar 

  • Hurtado AC, Chiconato DA, de Mello Prado R, Sousa GS Jr, Felisberto G (2019) Silicon attenuates sodium toxicity by improving nutritional efficiency in sorghum and sunflower plants. Plant Physiol Biochem 142:224–233

    Google Scholar 

  • Hussain RA, Ashraf MY, Ahmad R, Waraich E, Hussain M (2016) Foliar nitrogen and potassium applications improve photosynthetic activities and water relations in sunflower under moisture deficit condition. PAK J BOT 48:1805–1811

    Google Scholar 

  • Jamil A, Riaz S, Ashraf M, Foolad MR (2011) Gene expression profiling of plants under salt stress. Crit Revi Plant Sci 30:435–458

    Google Scholar 

  • Kariola T, Brader G, Li J, Palva ET (2005) Chlorophyllase 1, a damage control enzyme, affects the balance between defense pathways in plants. Plant Cell 17:282–294

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khaliq A, Zia-ul-Haq M, Ali F, Aslam F, Matloob A, Navab A, Hussain S (2015) Salinity tolerance in wheat cultivars is related to enhanced activities of enzymatic antioxidants and reduced lipid peroxidation. Clean Soil Air Water 438:1248–1258

    Google Scholar 

  • Khan WUD, Tanveer M, Shaukat R, Ali M, Pirdad F (2020) An overview of salinity tolerance mechanism in plants. Salt and drought stress tolerance in plants. pp 1–16

  • Kim J‑M, To TK, Matsui A, Tanoi K, Kobayashi NI, Matsuda F, Habu Y, Ogawa D, Sakamoto T, Matsunaga S (2017) Acetate-mediated novel survival strategy against drought in plants. Nat Plants 3:1–7

    CAS  Google Scholar 

  • Liu R, Wang L, Tanveer M, Song J (2018) Seed heteromorphism: an important adaptation of halophytes for habitat heterogeneity. Front Plant Sci 9:1515

    PubMed  PubMed Central  Google Scholar 

  • Liu W, Li R‑J, Han T‑T, Cai W, Fu Z‑W, Lu Y‑T (2015) Salt stress reduces root meristem size by nitric oxide-mediated modulation of auxin accumulation and signaling in Arabidopsis. Plant Physiol 168:343–356

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mahmood T, Iqbal N, Raza H, Qasim M, Ashraf MY (2010) Growth modulation and ion partitioning in salt stressed sorghum (Sorghum bicolor L.) by exogenous supply of salicylic acid. PAK J BOT 42:3047–3054

    CAS  Google Scholar 

  • Makhlouf BSI, Khalil SRAE, Saudy HS (2022) Efficacy of humic acids and chitosan for enhancing yield and sugar quality of sugar beet under moderate and severe drought. J Soil Sci Plant Nutr: 22:1–16. https://doi.org/10.1007/s42729-022-00762-7

    Article  CAS  Google Scholar 

  • Meguekam TL, Moualeu DP, Taffouo VD, StüTzel H (2021) Changes in plant growth, leaf relative water content and physiological traits in response to salt stress in peanut (Arachis hypogaea L.) varieties. Not Bot Horti Agrobot Cluj Nap 49:12049

    CAS  Google Scholar 

  • Mostofa MG, Fujita M (2013) Salicylic acid alleviates copper toxicity in rice (Oryza sativa L.) seedlings by up-regulating antioxidative and glyoxalase systems. Ecotoxicology 22:959–973

    CAS  PubMed  Google Scholar 

  • Mostofa MG, Ghosh A, Li Z‑G, Siddiqui MN, Fujita M, L‑SP T (2018) Methylglyoxal—a signaling molecule in plant abiotic stress responses. Free Rad Biol Med 122:96–109

    CAS  PubMed  Google Scholar 

  • Munns R, Gilliham M (2015) Salinity tolerance of crops–what is the cost? New Phytol 208:668–673

    CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) “Mechanisms of salinity tolerance” Annual review of plant biology 59:651

    CAS  PubMed  Google Scholar 

  • Munns R, James RA, Xu B, Athman A, Conn SJ, Jordans C, Byrt CS, Hare RA, Tyerman SD, Tester M (2012) Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Na Biotec 30:360–364

    CAS  Google Scholar 

  • Nazar R, Iqbal N, Syeed S, Khan NA (2011) Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. J Plant Physiol 168:807–815

    CAS  PubMed  Google Scholar 

  • Pan T, Liu M, Kreslavski VD, Zharmukhamedov SK, Nie C, Yu M, Kuznetsov VV, Allakhverdiev SI, Shabala S (2021) Non-stomatal limitation of photosynthesis by soil salinity. Crit Rev Environ Sci Technol 51:791–825

    CAS  Google Scholar 

  • Peña-Calzada K, Olivera VD, Habermann E, Calero HA, Lupino GP, De MP, Lata-Tenesaca LF, Martinez CA, Ajila CG, Rodríguez JC (2022) Exogenous application of amino acids mitigates the deleterious effects of salt stress on soybean plants. Agronomy 12:2014

    Google Scholar 

  • Rahman M, Mostofa MG, Miah M, Saha SR, Karim MA, Keya SS, Akter M, Islam M, L‑SP T (2019) Insight into salt tolerance mechanisms of the halophyte Achras sapota: an important fruit tree for agriculture in coastal areas. Protoplasma 256:181–191

    CAS  PubMed  Google Scholar 

  • Rahman M, Mostofa MG, Keya SS, Rahman A, Das AK, Islam R, Abdelrahman M, Bhuiyan SU, Naznin T, Ansary MU (2021) Acetic acid improves drought acclimation in soybean: an integrative response of photosynthesis, osmoregulation, mineral uptake and antioxidant defense. Physiolo Plantarum 172:334–350

    CAS  Google Scholar 

  • Rajabi Dehnavi A, Zahedi M, Ludwiczak A, Piernik A (2022) Foliar application of salicylic acid improves salt tolerance of sorghum (sorghum bicolor (L.) Moench). Plants 11:368

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rao KM, Sresty T (2000) Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Sci 157:113–128

    Google Scholar 

  • Redondo GS, García-López JV, Mesa-Marín J, Pajuelo E, Rodriguez-Llorente ID, Mateos-Naranjo E (2022) Synergistic effect of plant-growth-promoting rhizobacteria improves strawberry growth and flowering with soil salinization and increased atmospheric CO2 levels and temperature conditions. Agron 12:2082

    Google Scholar 

  • Saddiq MS, Iqbal S, Hafeez MB, Ibrahim AM, Raza A, Fatima EM, Baloch H, Woodrow P, Ciarmiello LF (2021) Effect of salinity stress on physiological changes in winter and spring wheat. Agronomy 11:1193

    CAS  Google Scholar 

  • Salem EM, Kenawey MK, Saudy HS, Mubarak M (2022) Influence of silicon forms on nutrients accumulation and grain yield of wheat under water deficit conditions. Gesunde Pflanz: 74:1–10. https://doi.org/10.1007/s10343-022-00629-y

    Article  CAS  Google Scholar 

  • Sarker U, Oba S (2020) The response of salinity stress-induced A. tricolor to growth, anatomy, physiology, non-enzymatic and enzymatic antioxidants. Front Plant Sci 11:559876

    PubMed  PubMed Central  Google Scholar 

  • Sarker U, Oba S, Daramy MA (2020) Nutrients, minerals, antioxidant pigments and phytochemicals, and antioxidant capacity of the leaves of stem amaranth. Sci Rep 10:1–9

    CAS  Google Scholar 

  • Savvides A, Ali S, Tester M, Fotopoulos V (2016) Chemical priming of plants against multiple abiotic stresses: mission possible? Trends Plant Sci 21:329–340

    CAS  PubMed  Google Scholar 

  • Seleiman MF, Aslam MT, Alhammad BA, Hassan MU, Maqbool R, Chattha MU, Khan I, Gitari HI, Uslu OS, Rana R (2022) Salinity stress in wheat: effects, mechanisms and management strategies. Phyton 91:667

    Google Scholar 

  • Steel R, Torrie J, Dickey M (1980) A biometrical approach. Principles and procedures of statistics, pp 8–566

    Google Scholar 

  • Sultan I, Khan I, Chattha MU, Hassan MU, Barbanti L, Calone R, Ali M, Majid S, Ghani MA, Batool M (2021) Improved salinity tolerance in early growth stage of maize through salicylic acid foliar application. Ita J Agron. https://doi.org/10.4081/ija.2021.1810

    Article  Google Scholar 

  • Talaat NB, Shawky BT (2022) Synergistic effects of salicylic acid and melatonin on modulating ion homeostasis in salt-stressed wheat (Triticum aestivum L.) plants by enhancing root H+-pump activity. Plants 11:416

    CAS  PubMed  PubMed Central  Google Scholar 

  • Utsumi Y, Utsumi C, Tanaka M, Ha CV, Takahashi S, Matsui A, Matsunaga TM, Matsunaga S, Kanno Y, Seo M (2019) Acetic acid treatment enhances drought avoidance in cassava (Manihot esculenta Crantz). Front Plant Sci 10:521

    PubMed  PubMed Central  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151:59–66

    CAS  Google Scholar 

  • Weiler EW, Jourdan PS, Conrad W (1981) Levels of indole-3-acetic acid in intact and decapitated coleoptiles as determined by a specific and highly sensitive solid-phase enzyme immunoassay. Planta 153:561–571

    CAS  PubMed  Google Scholar 

  • Xu Z, Rothstein SJ (2018) ROS-Induced anthocyanin production provides feedback protection by scavenging ROS and maintaining photosynthetic capacity in Arabidopsis. Plant Signal Beha 13:1364–1377

    Google Scholar 

  • Yadav T, Kumar A, Yadav R, Yadav G, Kumar R, Kushwaha M (2020) Salicylic acid and thiourea mitigate the salinity and drought stress on physiological traits governing yield in pearl millet-wheat. Saudi J Biol Sci 27:2010–2017

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yildiz M, Poyraz I, Çavdar A, Özgen Y, Beyaz R (2020) Plant responses to salt stress. In: Abdurakhmonov IY (ed) Plant breeding—current and future views. Intech Open, London

    Google Scholar 

  • Zhang X (1992) The measurement and mechanism of lipid peroxidation and SOD, POD and CAT activities in biological system. Res Methodol Crop Hysiol 15:208–211

    Google Scholar 

  • Zhang J, Zhang Q, **ng J, Li H, Miao J, Xu B (2021) Acetic acid mitigated salt stress by alleviating ionic and oxidative damages and regulating hormone metabolism in perennial ryegrass (Lolium perenne L.). Grass Res 1:1–10

    CAS  Google Scholar 

  • Zuzunaga-Rosas J, González-Orenga S, Tofei AM, Boscaiu M, Moreno-Ramón H, Ibáñez-Asensio S, Vicente O (2022) Effect of a biostimulant based on polyphenols and glycine betaine on tomato plants’ responses to salt stress. Agronomy 12:2142

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Muhammad Talha Aslam for his help with proofreading and formatting the manuscript. The authors also extend their appreciation to the Deanship of Scientific Research, King Khalid University, for supporting this work through the research groups program under grant number R.G.P.2/197/43.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Umair Hassan.

Ethics declarations

Conflict of interest

I. Khan, S. Hussan, M.U. Chattha, R. Maqbool, A. Mahmood, M. Ali, M. Aljabri, M. Hashem, S. Negm, M. Moustafa, M.U. Hassan, and S.H. Qari declare that they have no competing interests.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, I., Hussan, S., Chattha, M.U. et al. Acetic Acid Mitigates Salinity-Induced Toxic Effects in Wheat by Maintaining Photosynthetic Efficiency, Antioxidant Activities, Ionic Homeostasis, and Synthesis of Stress-Protection Hormones and Osmolytes. Gesunde Pflanzen 75, 979–992 (2023). https://doi.org/10.1007/s10343-022-00759-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-022-00759-3

Keywords

Navigation