Log in

Accelerating multi-echo water-fat MRI with a joint locally low-rank and spatial sparsity-promoting reconstruction

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objectives

Our aim was to demonstrate the benefits of using locally low-rank (LLR) regularization for the compressed sensing reconstruction of highly-accelerated quantitative water-fat MRI, and to validate fat fraction (FF) and \({R_2^*}\) relaxation against reference parallel imaging in the abdomen.

Materials and methods

Reconstructions using spatial sparsity regularization (SSR) were compared to reconstructions with LLR and the combination of both (LLR+SSR) for up to seven fold accelerated 3-D bipolar multi-echo GRE imaging. For ten volunteers, the agreement with the reference was assessed in FF and \({R_2^*}\) maps.

Results

LLR regularization showed superior noise and artifact suppression compared to reconstructions using SSR. Remaining residual artifacts were further reduced in combination with SSR. Correlation with the reference was excellent for FF with \(R^2\) = 0.99 (all methods) and good for \({R_2^*}\) with \(R^2\) = [0.93, 0.96, 0.95] for SSR, LLR and LLR+SSR. The linear regression gave slope and bias (%) of (0.99, 0.50), (1.01, 0.19) and (1.01, 0.10), and the hepatic FF/\({R_2^*}\) standard deviation was 3.5%/12.1 s\(^{-1}\), 1.9%/6.4 s\(^{-1}\) and 1.8%/6.3 s\(^{-1}\) for SSR, LLR and LLR+SSR, indicating the least bias and highest SNR for LLR+SSR.

Conclusion

A novel reconstruction using both spatial and spectral regularization allows obtaining accurate FF and \({R_2^*}\) maps for prospectively highly accelerated acquisitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. As a measure of image noise, SNR is defined as the average signal over the standard deviation in a homogeneous region of interest. Traditionally, higher SNR meant improved image quality. In the light of non-linear algorithms such as CS, it alone cannot serve as universal measure of image quality because reduced noise can simply be induced by reducing image resolution.

References

  1. Meisamy S, Hines CD, Hamilton G, Sirlin CB, McKenzie CA, Yu H, Brittain JH, Reeder SB (2011) Quantification of hepatic steatosis with T1-independent, T2*-corrected MR imaging with spectral modeling of fat: blinded comparison with MR spectroscopy. Radiology 258(3):767–775

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bashir MR, Zhong X, Nickel MD, Fananapazir G, Kannengiesser SA, Kiefer B, Dale BM (2015) Quantification of hepatic steatosis with a multistep adaptive fitting MRI approach: prospective validation against MR spectroscopy. Am J Roentgenol 204(2):297–306

    Article  Google Scholar 

  3. Dixon WT (1984) Simple proton spectroscopic imaging. Radiology 153(1):189–194

    Article  CAS  PubMed  Google Scholar 

  4. Reeder SB, Cruite I, Hamilton G, Sirlin CB (2011) Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy. J Magn Reson Imaging 34(4):729–749

    Article  PubMed  Google Scholar 

  5. Reeder SB, Pineda AR, Wen Z, Shimakawa A, Yu H, Brittain JH, Gold GE, Beaulieu CH, Pelc NJ (2005) Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL): application with fast spin-echo imaging. Magn Reson Med 54(3):636–644

    Article  PubMed  Google Scholar 

  6. Koken P, Eggers H, Börnert P (2007) Fast single breath-hold 3D abdominal imaging with water-fat separation. In: Proceedings of the 15th scientific meeting, international society for magnetic resonance in medicine, Berlin, pp 1623

  7. Liu CY, McKenzie CA, Yu H, Brittain JH, Reeder SB (2007) Fat quantification with IDEAL gradient echo imaging: correction of bias from T1 and noise. Magn Reson Med 58(2):354–364

    Article  PubMed  Google Scholar 

  8. Bydder M, Yokoo T, Hamilton G, Middleton MS, Chavez AD, Schwimmer JB, Lavine JE, Sirlin CB (2008) Relaxation effects in the quantification of fat using gradient echo imaging. Magn Reson Imaging 26(3):347–359

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yu H, Shimakawa A, McKenzie CA, Brodsky E, Brittain JH, Reeder SB (2008) Multiecho water-fat separation and simultaneous R2* estimation with multifrequency fat spectrum modeling. Magn Reson Med 60(5):1122–1134

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 58(6):1182–1195

    Article  PubMed  Google Scholar 

  11. Doneva M, Börnert P, Eggers H, Mertins A, Pauly J, Lustig M (2010) Compressed sensing for chemical shift-based water-fat separation. Magn Reson Med 64(6):1749–1759

    Article  CAS  PubMed  Google Scholar 

  12. Sharma SD, Hu HH, Nayak KS (2013) Accelerated T2*-compensated fat fraction quantification using a joint parallel imaging and compressed sensing framework. J Magn Reson Imaging 38(5):1267–1275

    Article  PubMed  Google Scholar 

  13. Wiens CN, McCurdy CM, Willig-Onwuachi JD, McKenzie CA (2014) R2*-corrected water-fat imaging using compressed sensing and parallel imaging. Magn Reson Med 71(2):608–616

    Article  PubMed  Google Scholar 

  14. Sharma SD, Trzasko JD, Manduca A (2013) Calibrationless chemical shift encoded imaging using a time-segmented k-space reconstruction. In: Proceedings of the 21st scientific meeting, international society for magnetic resonance in medicine, Salt Lake City, pp 130

  15. Soliman AS, Wiens CN, Wade TP, McKenzie CA (2015) Fat quantification using an interleaved bipolar acquisition. Magn Reson Med 75(5):2000–2008

    Article  PubMed  Google Scholar 

  16. Mann LW, Higgins DM, Peters CN, Cassidy S, Hodson KK, Coombs A, Taylor R, Hollingsworth KG (2016) Accelerating MR imaging liver steatosis measurement using combined compressed sensing and parallel imaging: a quantitative evaluation. Radiology 278(1):247–256

    Article  PubMed  Google Scholar 

  17. Hollingsworth KG, Higgins DM, McCallum M, Ward L, Coombs A, Straub V (2014) Investigating the quantitative fidelity of prospectively undersampled chemical shift imaging in muscular dystrophy with compressed sensing and parallel imaging reconstruction. Magn Reson Med 72(6):1610–1619

    Article  PubMed  Google Scholar 

  18. Bydder M, Du J (2006) Noise reduction in multiple-echo data sets using singular value decomposition. Magn Reson Imaging 24(7):849–856

    Article  PubMed  Google Scholar 

  19. Lugauer F, Nickel D, Wetzl J, Kannengiesser SA, Maier A, Hornegger J (2015) Robust spectral denoising for water-fat separation in magnetic resonance imaging. In: Medical image computing and computer-assisted intervention—MICCAI 2015, Munich, pp 667–674

  20. Lugauer F, Nickel D, Kannengiesser S, Barnes S, Holshouser B, Wetzl J, Hornegger J, Maier A (2016) Improving parameter map** in MRI relaxometry and multi-echo dixon using an automated spectral denoising. In: Proceedings of the 24th scientific meeting, international society for magnetic resonance in medicine, Singapore, pp 3269

  21. Allen BC, Lugauer F, Nickel D, Bhatti L, Dafalla R, Dale BM, Jaffe T, Bashir M (2016) Effect of a low-rank denoising algorithm on quantitative MRI-based measures of liver fat and iron. In: Proceedings of the 24th scientific meeting, international society for magnetic resonance in medicine, Singapore, pp 4224 (Accepted for publication in JCAT)

  22. Trzasko J, Manduca A, Borisch E (2011) Local versus global low-rank promotion in dynamic MRI series reconstruction. In: Proceedings of the 19th scientific meeting, international society for magnetic resonance in medicine, Montreal, pp 4371

  23. Zhang T, Pauly JM, Levesque IR (2015) Accelerating parameter map** with a locally low rank constraint. Magn Reson Med 73(2):655–661

    Article  PubMed  Google Scholar 

  24. Lugauer F, Nickel D, Wetzl J, Kiefer B, Hornegger J (2015) Water-fat separation using a locally low-rank enforcing reconstruction. In: Proceedings of the 23rd scientific meeting, international society for magnetic resonance in medicine, Toronto, pp 3652

  25. Hamilton G, Yokoo T, Bydder M, Cruite I, Schroeder ME, Sirlin CB, Middleton MS (2011) In vivo characterization of the liver fat 1H MR spectrum. NMR Biomed 24(7):784–790

    Article  PubMed  Google Scholar 

  26. Berglund J, Ahlström H, Johansson L, Kullberg J (2011) Two-point dixon method with flexible echo times. Magn Reson Med 65(4):994–1004

    Article  PubMed  Google Scholar 

  27. Cui C, Wu X, Newell JD, Jacob M (2015) Fat water decomposition using globally optimal surface estimation (GOOSE) algorithm. Magn Reson Med 73(3):1289–1299

    Article  PubMed  Google Scholar 

  28. Cai JF, Candès EJ, Shen Z (2010) A singular value thresholding algorithm for matrix completion. SIAM J Optim 20(4):1956–1982

    Article  Google Scholar 

  29. Goldstein T, Osher S (2009) The split Bregman method for L1-regularized problems. SIAM J Imaging Sci 2(2):323–343

    Article  Google Scholar 

  30. Figueiredo MA, Nowak RD (2003) An EM algorithm for wavelet-based image restoration. IEEE Trans Image Process 12(8):906–916

    Article  PubMed  Google Scholar 

  31. Hutter J, Grimm R, Forman C, Hornegger J, Schmitt P (2015) Highly undersampled peripheral time-of-flight magnetic resonance angiography: optimized data acquisition and iterative image reconstruction. Magn Reson Mater Phy 28(5):437–446

    Article  Google Scholar 

  32. Eckstein J, Bertsekas DP (1992) On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math Program 55(1–3):293–318

    Article  Google Scholar 

  33. Trzasko JD, Manduca A (2011) Calibrationless parallel MRI using CLEAR. In: 2011 Conference record of the forty fifth asilomar conference on signals. Systems and Computers (ASILOMAR), Pacific Grove, pp 75–79

  34. Bridson R (2007) Fast Poisson disk sampling in arbitrary dimensions. In: ACM SIGGRAPH 2007 Sketches. SIGGRAPH '07. ACM, San Diego. doi:10.1145/1278780.1278807

  35. Song C, Wang P, Makse HA (2008) A phase diagram for jammed matter. Nature 453(7195):629–632

    Article  CAS  PubMed  Google Scholar 

  36. Breuer FA, Blaimer M, Mueller MF, Seiberlich N, Heidemann RM, Griswold MA, Jakob PM (2006) Controlled aliasing in volumetric parallel imaging (2D CAIPIRINHA). Magn Reson Med 55(3):549–556

    Article  PubMed  Google Scholar 

  37. Zhu C, Byrd RH, Lu P, Nocedal J (1997) Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization. ACM Trans Math Softw 23(4):550–560

    Article  Google Scholar 

  38. Zhong X, Nickel MD, Kannengiesser SA, Dale BM, Kiefer B, Bashir MR (2014) Liver fat quantification using a multi-step adaptive fitting approach with multi-echo GRE imaging. Magn Reson Med 72(5):1353–1365

    Article  PubMed  Google Scholar 

  39. Eggers H, Brendel B, Duijndam A, Herigault G (2011) Dual-echo Dixon imaging with flexible choice of echo times. Magn Reson Med 65(1):96–107

    Article  PubMed  Google Scholar 

  40. Ong F, Lustig M (2016) Beyond low rank + sparse: multiscale low rank matrix decomposition. IEEE J Sel Top Signal Process 10(4):672–687

    Article  Google Scholar 

  41. Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2011) Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn 3(1):1–122

    Article  Google Scholar 

  42. Katkovnik V, Foi A, Egiazarian K, Astola J (2010) From local kernel to nonlocal multiple-model image denoising. Int J Comput Vis 86(1):1–32

    Article  Google Scholar 

  43. Shea SM, Kroeker RM, Deshpande V, Laub G, Zheng J, Finn JP, Li D (2001) Coronary artery imaging: 3D segmented k-space data acquisition with multiple breath-holds and real-time slab following. J Magn Reson Imaging 13(2):301–307

    Article  CAS  PubMed  Google Scholar 

  44. Taubmann O, Wetzl J, Lauritsch G, Maier A, Hornegger J (2015) Sharp as a Tack. Bildverarbeitung für die Medizin 2015. Springer, Berlin, pp 425–430

  45. Hansen PC (1992) Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev 34(4):561–580

    Article  Google Scholar 

  46. Artz NS, Haufe WM, Hooker CA, Hamilton G, Wolfson T, Campos GM, Gamst AC, Schwimmer JB, Sirlin CB, Reeder SB (2015) Reproducibility of MR-based liver fat quantification across field strength: same-day comparison between 1.5 T and 3T in obese subjects. J Magn Reson Imaging 42(3):811–817

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lingala SG, Hu Y, DiBella E, Jacob M (2011) Accelerated dynamic MRI exploiting sparsity and low-rank structure: kt SLR. IEEE Trans Med Imaging 30(5):1042–1054

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the Research Training Group 1773 “Heterogeneous Image Systems”, funded by the German Research Foundation (DFG). Author contribution statement Lugauer: Protocol and project development, data collection and analysis. Nickel: Protocol and project development, data management. Wetzl: Data collection and management. Kiefer: Project development. Hornegger: Project development. Maier: Project development

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Lugauer.

Ethics declarations

Informed consent

This manuscript does not contain clinical studies or patient data. Informed consent was obtained from all volunteers included in the study.

Conflict of interest

Felix Lugauer and Jens Wetzl receive project funding from Siemens Healthcare GmbH. Dominik Nickel and Berthold Kiefer are employees of Siemens Healthcare GmbH.

Appendix: Update terms and solutions of proximal operators

Appendix: Update terms and solutions of proximal operators

Update terms of the SB algorithm enforce the coupling with penalty terms:

$$\begin{aligned}& \varvec{b}^{(k+1)}_b= {} \varvec{b}^{(k)}_b + \varvec{x}^{(k+1)} - \varvec{d}^{(k+1)}_b, \nonumber \\ & \varvec{b}^{(k+1)}_x= \varvec{b}^{(k)}_x + \nabla _x \varvec{x}^{(k+1)} - \varvec{d}^{(k+1)}_x, \nonumber \\ &\varvec{b}^{(k+1)}_y= \varvec{b}^{(k)}_y + \nabla _y \varvec{x}^{(k+1)} - \varvec{d}^{(k+1)}_y, \nonumber \\ &\varvec{b}^{(k+1)}_w= \varvec{b}^{(k)}_w + \varvec{W} \varvec{x}^{(k+1)} - \varvec{d}^{(k+1)}_w. \end{aligned}$$
(11)

The proximal operator for the TV formulation is realized via generalized shrinkage as

$$\begin{aligned} \varvec{d}_x^{(k+1)}= & {} \left( \varvec{s}^{(k)} - \dfrac{\mu _d}{\lambda _d} \right) _{+} \dfrac{\nabla _x \varvec{x}^{(k+1)} + \varvec{b}_x^{(k)} }{\varvec{s}^{(k)}}, \end{aligned}$$
(12)
$$\begin{aligned} \varvec{d}_y^{(k+1)}= & {} \left( \varvec{s}^{(k)} - \dfrac{\mu _d}{\lambda _d} \right) _{+} \dfrac{\nabla _y \varvec{x}^{(k+1)} + \varvec{b}_y^{(k)} }{\varvec{s}^{(k)}}, \end{aligned}$$
(13)

with

$$\begin{aligned} \varvec{s}^{(k)} = \sqrt{ \left( \nabla _x \varvec{x}^{(k+1)} + \varvec{b}_x^{(k)} \right) ^2 + \left( \nabla _y \varvec{x}^{(k+1)} + \varvec{b}_y^{(k)} \right) ^2 } , \end{aligned}$$
(14)

where \((\varvec{a})_+\) performs component-wise \({\text {max}}\left( 0,\varvec{a}_j \right)\), while soft-thresholding of wavelet coefficients is used for DWTs [29]:

$$\begin{aligned} \varvec{d}_w^{(k+1)} = {\text {soft}} \left( \varvec{W} \varvec{x}^{(k+1)} + \varvec{b}_w^{(k)}, \dfrac{\mu _w}{\lambda _w} \right) . \end{aligned}$$
(15)

The LLR proximal functional can be solved separately in the case of non-overlap** blocks by singular value soft-thresholding and placing the result back with the adjoint operator \(B^{\dagger }\) [28, 33],

$$\begin{aligned} \varvec{d}_b^{(k+1)}= & {} \sum _{p \in \Omega } B^{\dagger }_p \left( \text {SVT} \left( B_p \left( \varvec{x}^{(k+1)} \right) ,\dfrac{\mu _b}{\lambda _B} \right) \right) , \nonumber \\ \text {using SVT}(\varvec{X},\theta )= & {} \varvec{U} {\text {diag}}\left( (\varvec{\sigma } - \theta )_+ \right) \varvec{V}^T. \end{aligned}$$
(16)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lugauer, F., Nickel, D., Wetzl, J. et al. Accelerating multi-echo water-fat MRI with a joint locally low-rank and spatial sparsity-promoting reconstruction. Magn Reson Mater Phy 30, 189–202 (2017). https://doi.org/10.1007/s10334-016-0595-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-016-0595-7

Keywords

Navigation