Log in

Niedrigdosierte transdermale Östradiol-Antiandrogen-Therapie

Primärprävention des Diabetes mellitus Typ II in der Postmenopause

Low-dose transdermal therapy with estradiol and anti-androgen

Primary prevention of diabetes mellitus type 2 in the menopause

  • Arzneimitteltherapie
  • Published:
Gynäkologische Endokrinologie Aims and scope

Zusammenfassung

In der Postmenopause (PM) kommt es häufig zu einem negativen Circulus vitiosus aus Gewichtszunahmen, relativer Hyperandrogenämie, Dyslipidämie, Hypertonus, Insulinresistenz und schließlich Diabetes mellitus Typ II (DM) sowie schweren Herz-Kreislauf-Erkrankungen. Bei 474 postmenopausalen Frauen unter niedrig dosierter Hormonersatztherapie (HET) mit bioidentischen Hormonen sowie 1073 prämenopausalen unbehandelten Frauen wurde ein oraler Glukosetoleranztest mit Bestimmung von Insulin und Glukose in 5 verschiedenen Gewichtsgruppen durchgeführt. Zusätzlich wurden weitere Parameter des Stoffwechsels bzw. der klinischen Chemie überprüft. Eine solche HET kann den negativen Circulus vitiosus unterbrechen: Der postmenopausale Glukoseanstieg wird durch eine verbesserte Insulinsensitivität kompensiert, die Östrogenwerte in der PM liegen im Bereich der frühen Follikelphase, während die Konzentrationen von Dehydroepiandrosteronsulfat und Androstendion deutlich abfallen. Die kontrollierte, niedrig dosierte HET mit bioidentischem Östradiol in Kombination mit einem niedrig dosierten Antiandrogen verhindert die Entwicklung schwerer Volkskrankheiten wie Insulinresistenz und Diabetes mellitus und ist als eine wesentliche primärpräventive Maßnahme in der Postmenopause anzusehen, die allen postmenopausalen Frauen zur Verfügung stehen sollte.

Abstract

The vicious circle of increased body weight (BW), relative hyperandrogenemia (HA), dyslipidemia (DL), hypertension (H), insulin resistance (IR) and ultimately type 2 diabetes mellitus (DM) and severe cardiovascular disease (CVD) often affects postmenopausal women (PM). A total of 474 postmenopausal women on low-dose hormone replacement therapy (HRT) were compared to 1,073 premenopausal women receiving no therapy. An oral glucose tolerance test (OGTT) with measurement of insulin (I) and glucose (G) was carried out in women in five different body weight groups. Additionally, parameters of metabolism and other clinical chemistry measurements were carried out. Low-dose HRT can effectively halt this vicious circle. The increase in glucose levels in postmenopausal women is compensated by better insulin sensitivity. The production of insulin was not increased in comparison with premenopausal women and free insulin-like growth factor 1 (IGF-1) was even shown to decrease. The estrogen and androgen values in PM are comparable to that of premenopausal women in the early follicular phase. Controlled, low-dose HRT with bioidentical natural estrogen in combination with low dose antiandrogen can prevent the development of severe common diseases, such as IR and DM and is therefore an important method of primary prevention in postmenopausal women which should be made readily available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Abbreviations

Δ4A:

Androstendion

A1, A2, A3:

Adipositas unterschiedlichen Ausmaßes

ADA:

„American Diabetes Association“

ADMA:

Asymetrisches Dimethylarginin (Vasodilatator)

AUC:

„Area under the curve“

BMI:

Body-Mass-Index

CPA:

Cyproteronazetat (Antiandrogen)

CRP:

C-reaktives Protein

DHEA:

Dehydroepiandrosteron

DHEAS:

Dehydroepiandrosteronsulfat

DHT:

Dihydrotestosteron

DM:

Diabetes mellitus Typ II

E1:

Östron

E2:

Östradiol

F:

Kortisol

FIBR:

Fibrinogen

fT:

Freies Testosteron

fT3:

Freies Trijodthyronin

fT4:

Freies Thyroxin

G0 :

Nüchternglukosekonzentration

G60 :

Glukosekonzentration nach 60 min im oGTT

G120 :

Glukosekonzentration nach 120 min im oGTT

GC:

Gesamtcholesterin

GLUT4:

Glukosetransporter 4

HA:

Hyperandrogenämie

HbA1c :

Glykohämoglobin

HDL:

High-Density-Lipoprotein

HET:

Hormonersatztherapie

HKE :

Herz-Kreislauf-Erkrankung

HOM:

Homocystein

HOMA:

„Homeostasis model assessment“

HS:

Harnsäure

I0 :

Nüchterninsulinwert

I60 :

Insulinkonzentration nach 60 min im oGTT

I120 :

Insulinkonzentration nach 120 min im oGTT

IGF:

„Insulin-like growth factor“

IGFBP3:

„Insulin-like growth factor binding protein 3“

IL:

Interleukin

IR:

Insulinresistenz

IS:

Insulinsensitivität

KG:

Körpergewicht

LDL:

Low-Density-Lipoprotein

Lp(a):

Lipoprotein (a)

NFκB:

Nukleärer Faktor kappa B

NPL:

Neoplasma

n.s.:

Nicht signifikant

oGTT:

Oraler Glukosetoleranztest

PAI-1:

Plasminogenaktivatorinhibitor

PCO:

Polyzystische Ovarien

pIR:

Primäre Insulinresistenz

SHBG:

Sexualhormon bindendes Globulin

sIR:

Sekundäre Insulinresistenz

T:

Testosteron

TG:

Triglyzeride

TNF-α:

Tumornekrosefaktor α

TSH:

Thyroidea stimulierendes Hormon

WHO:

Weltgesundheitsorganisation

Literatur

  1. Maggio M, Lauretani F, Ceda GP et al (2007) Association of hormonal dysregulation with metabolic syndrome in older women: data from the InCHIANTI study. Am J Physiol Endocrinol Metab 292:353–358

    Article  Google Scholar 

  2. Otsuki M, Kasayama S, Morita S et al (2007) Menopause, but not age, is an independent risk factor for fasting plasma glucose levels in nondiabetic women. Menopause 14:404–407

    Article  PubMed  Google Scholar 

  3. Reaven GM (2008) Insulin resistance: the link between obesity and cardiovascular disease. Endocrinol Metab Clin North Am 37:581–601

    Article  PubMed  CAS  Google Scholar 

  4. Cho GJ, Lee JH, Park HT et al (2008) Postmenopausal status according to years since menopause as an independent risk factor for the metabolic syndrome. Menopause 15:524–529

    PubMed  Google Scholar 

  5. Patel SM, Ratcliffe SJ, Reilly MP et al (2009) Higher serum testosterone concentration in older women is associated with insulin resistance, metabolic syndrome, and cardiovascular disease. J Clin Endocrinol Metab 94:4776–4784

    Article  PubMed  CAS  Google Scholar 

  6. Lin J-W, Caffrey JL, Chang MH, Lin YS (2010) Sex, menopause, metabolic syndrome, and all-cause and cause-specific mortality-cohort analysis from the Third National Health and Nutrition Examination Survey. J Clin Endocrinol Metab 95:4258–4267

    Article  PubMed  CAS  Google Scholar 

  7. Stram DO, Liu Y, Henderson KJ et al (2011) Age-specific effects of hormone therapy use on overall mortality and ischemic heart disease mortality among women in the California Teachers Study. Menopause 18:253–261

    Article  PubMed  Google Scholar 

  8. Gambacciani M, Ciaponi M, Cappagli B et al (2001) Prospective evaluation of body weight and body fat distribution in early postmenopausal women with and without hormonal replacement therapy. Maturitas 39:125–132

    Article  PubMed  CAS  Google Scholar 

  9. Wu S-I, Chou P, Tsai ST (2001) The impact of years since menopause on the development of impaired glucose tolerance. J Epidemiol 54:117–120

    CAS  Google Scholar 

  10. Kanaya AM, Herrington D, Vittinghoff E et al (2003) Glycemic effects of postmenopausal hormone therapy: the heart and estrogen/progestin replacement study. Ann Intern Med 138:1–9

    PubMed  CAS  Google Scholar 

  11. Margolis KL, Bonds DE, Rodabough RJ et al (2004) Effects of oestrogen plus progestin on the incidence of diabetes in postmenopausal women: results from the Women’s Health Initiative Hormone Trial. Diabetologia 47:1175–1187

    Article  PubMed  CAS  Google Scholar 

  12. Rossi R, Origliani C, Modena MG (2004) Transdermal 17-β-estradiol and risk of develo** type 2 diabetes in a population of healthy, nonobese postmenopausal women. Diabetes Care 27:645–649

    Article  PubMed  CAS  Google Scholar 

  13. Kaaja R (2008) Metabolic syndrome and the menopause. Menopause Int 14:21–25

    Article  PubMed  Google Scholar 

  14. Pentti K, Tuppurainen MT, Hinkanen R et al (2009) Hormone therapy protects from diabetes: the Kuopio osteoporosis risk factor and prevention study. Eur J Endocrinol 160:979–983

    Article  PubMed  CAS  Google Scholar 

  15. Moltz L, Holl RW (2010) Primäre und sekundäre Insulinresistenz: Konzentrationen von Glukose und Insulin bei normgewichtigen, anscheinend gesunden Probandinnen. Diabetologie 5:372–378

    Article  Google Scholar 

  16. Moltz L, Holl RW (2010) Primäre und sekundäre Insulinresistenz: Konzentrationen von Glukose und Insulin bei übergewichtigen bzw. adipösen Patientinnen. Diabetologie 5:379–385

    Article  Google Scholar 

  17. Moltz L (2008) Die primäre Insulinresistenz (pIR). J Prev Med 4:160–169

    Google Scholar 

  18. Moltz L (2011) Primäre Insulinresistenz: lebenslang fehlprogrammiert. Hausarzt 15:30–32

    Google Scholar 

  19. Pyykkönen A-J, Räikkönen K, Tuomi T et al (2009) Stressful life events and the metabolic syndrome: the PPP-Botnia Study. Diabetes Care 33(2):378–384

    Article  PubMed  Google Scholar 

  20. Puurunen J, Piltonen T, Morin-Papunen L et al (2011) Unfavorable hormonal, metabolic, and inflammatory alterations persist after menopause in women with PCOS. J Clin Endocrinol Metab 96:1827–1834

    Article  PubMed  CAS  Google Scholar 

  21. Janssen I, Powell LH, Crawford S et al (2008) Menopause and the metabolic syndrome. Arch Intern Med 168:1568–1575

    Article  PubMed  CAS  Google Scholar 

  22. Puurunen J, Piltonen T, Jaakkola P et al (2009) Adrenal androgen production capacity remains high up to menopause in women with polycystic ovary syndrome. J Clin Endocrinol Metab 94:1973–1978

    Article  PubMed  CAS  Google Scholar 

  23. Cooper BC, Burger NZ, Toth MJ et al (2007) Insulin resistance with hormone replacement therapy: associations with markers of inflammation and adiposity. Am J Obstet Gynecol 196:123.e1–123.e7

    PubMed  CAS  Google Scholar 

  24. Shifren JL (2009) Androgens, estrogens, and metabolic syndrome at midlife. Menopause 16:226–228

    Article  PubMed  Google Scholar 

  25. Torréns JI, Sutton-Tyrrell K, Zhao X et al (2009) Relative androgen excess during the menopausal transition predicts incident metabolic syndrome in midlife women: study of women’s health across the Nation. Menopause 16:257–264

    Article  PubMed  Google Scholar 

  26. Huffmann KM, Slentz CA, Johnson JL et al (2008) Impact of hormone replacement therapy on exercise training-induced improvements in insulin action in sedentary overweight adults. Metabolism 57:888–895

    Article  Google Scholar 

  27. Borissova AM, Tankova T, Kamenova P et al (2002) Effects of hormone replacement therapy on insulin secretion and insulin sensitivity in postmenopausal diabetic women. Gynecol Endocrinol 16:67–74

    PubMed  CAS  Google Scholar 

  28. Salpeter SR, Walsh JM, Ormiston TM et al (2006) Meta-analysis: effect of hormone-replacement therapy on components of the metabolic syndrome in postmenopausal women. Diabetes Obes Metab 8:538–554

    Article  PubMed  CAS  Google Scholar 

  29. Redig AJ, Munshi HG (2010) Care off the cancer survivor: metabolic syndrome after hormone-modifying therapy. J Clin Endocrinol Metab 123:87.el–87.e6

    Google Scholar 

  30. Villa P, Moruzzi MC, Lassandro AP et al (2010) Metabolic impact of estrogen replacement therapy. J Reproduktionsmed Endokrinol 7:119–124

    CAS  Google Scholar 

  31. Brennan K, Huang A, Azziz R (2009) Dehydroepandrosterone sulfat and insulin resistance in patients with polycystic ovary syndrome. Fertil Steril 91:1848–1852

    Article  PubMed  CAS  Google Scholar 

  32. Shufeld C, Bretsky P, Almeida CM et al (2010) DHEA-S levels and cardiovascular disease mortality in postmenpausal women: results from the National Instituts of Health – National Heart, Lung, and Blood Institute (NHLBI)-sponsored Women’s Ischemia Syndrom Evaluation (WISE). J Clin Endocrinol Metab 95:4985–4992

    Article  Google Scholar 

  33. Mozzanega B, Babbo GL, Salmaso L et al (2007) Oral 17β-estradiol and sequential progesterone in menopause: effects on insulin-like growth factors and their binding proteins. Gynecol Endocrinol 23:50–57

    Article  PubMed  CAS  Google Scholar 

  34. Sonnet E, Lacut K, Roudaut N et al (2007) Effects of the route of oestrogen administration on IGF-1 and IGFBP-3 in healthy postmenopausal women: results from a randomized placebo-controlled study. Clin Endocrinol 66:626–631

    Article  CAS  Google Scholar 

  35. Trinconi AF, Filassi JR, Soares JM Jr, Baracat EC (2011) Evaluation of the insulin-like growth factors (IGF) IGF-1 and IGF binding protein 3 in patients at high risk for breast cancer. Fertil Steril 95:2753–2755

    Article  PubMed  CAS  Google Scholar 

  36. Salpeter SR, Walsh JM, Greyber E et al (2004) Mortality associated with hormone replacement therapy in younger and older women: a meta-analysis. J Gen Intern Med 19:791–804

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt für sich und seinen Koautor an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Moltz.

Anhang

Anhang

Kürzel (s. Tab. 3, Tab. 4, Tab. 5 und Tab. 6) und Normalbereiche der Analytik sind für metabolische Parameter und für Hormone in Tab. 8 aufgeführt.

Tab. 8 Normalbereiche der Analytik

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moltz, L., Holl, R. Niedrigdosierte transdermale Östradiol-Antiandrogen-Therapie. Gynäkologische Endokrinologie 10, 281–288 (2012). https://doi.org/10.1007/s10304-012-0510-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10304-012-0510-x

Schlüsselwörter

Keywords

Navigation