Log in

Characterization of multi-band GNSS multipath in urban canyons using the 3D ray-tracing method

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

The multipath effect is the major challenge that deteriorates the high precision and robustness of positioning with global navigation satellite system (GNSS) in urban canyons. It leads to signal attenuation, Doppler shift, time delay, and phase rotation in a coupling manner. In addition, the multipath effect also exhibits the inter-frequency correlation features among different signal bands and types. This work derives theoretical multipath features and quantifies the multi-band multipath correlation. The ray-tracing method with 3D city maps is utilized to construct multipath geometry and conduct multipath characterization. The temporal-frequency multipath spectral analysis on real measurements regarding carrier-to-noise (\(C/{N}_{0}\)), Doppler residuals, and code-minus-carrier (CMC) are provided by using the Hilbert–Huang transform (HHT). To verify the periodic fluctuations and the multi-band correlation in a more realistic situation, the influence of baseband processing is considered and reconstructed. It is confirmed that multipath measurements oscillate at the relative Doppler shift rate, which is proportional to the carrier frequency. This work facilitates multipath identification and mitigation and eventually improves GNSS positioning precision under multipath influence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

The GNSS observational data can be made available upon request by contacting the authors.

References

Download references

Acknowledgements

This research was jointly supported by the National Key R&D Program of China (No. 2022YFB3904401), the National Science Foundation of China (No. 62003211), and the Natural Science Foundation of Shanghai (No.22ZR1434500). The Geographic information in Lujiazui CBD, Shanghai, was provided by Huawei Technologies Co., Ltd.

Author information

Authors and Affiliations

Authors

Contributions

RY and SL contributed to conceptualization; SL was involved in literature investigation; methodology; theoretical analysis; figures and tables; and writing—original draft, and provided software and simulation; RY contributed to project administration; RY and XZ were involved in supervision and writing—review and editing, and contributed to funding acquisition. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Rong Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Ethics approval

Not applicable.

Consent for publication

All authors have read and agreed to the published version of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Derivation of the Doppler measurement error

This appendix presents the detailed calculation of the Doppler measurement error. The discrimination algorithm is:

$$\begin{array}{*{20}c} {\delta f_{d,i} \left[ k \right] = \frac{1}{2\pi T}\arctan \left( {\frac{{P_{{\text{cross,i}}} \left[ k \right]}}{{P_{{\text{dot,i}}} \left[ k \right]}}} \right) } \\ \end{array}$$
(A.1)

where \({P}_{cross,i}\left[k\right]\) is computed as:

$$\begin{array}{*{20}c} {P_{{\text{cross,i}}} \left[ k \right] = P_{Q,i} \left[ k \right]P_{I,i} \left[ {k - 1} \right] - P_{I,i} \left[ k \right]P_{Q,i} \left[ {k - 1} \right]} \\ \end{array}$$
(A.2)

and \({P}_{dot,i}\left[k\right]\) is:

$$\begin{array}{*{20}c} {P_{{\text{dot,i}}} \left[ k \right] = P_{I,i} \left[ k \right]P_{I,i} \left[ {k - 1} \right] + P_{Q,i} \left[ k \right]P_{Q,i} \left[ {k - 1} \right]} \\ \end{array}$$
(A.4)

Thus:

$$\begin{aligned}{P}_{cross,i}\left[k\right]&\approx {A}_{LOS,i}{A}_{NLOS,i}{R}_{i}\left(\Delta {\tau }_{i}[k]\right)\left({\text{sin}}\left(\Delta {\phi }_{i}\left[k\right]+2\pi\Delta {f}_{d,i}\left[k\right]T\right)-{\text{sin}}\left(\Delta {\phi }_{i}\left[k\right]+2\pi\Delta {f}_{d,i}\left[k-1\right]T\right)\right)\\& +{A}_{NLOS,i}^{2}{R}_{i}^{2}\left(\Delta {\tau }_{i}[k]\right)\left({\text{sin}}\left(\Delta {\phi }_{i}\left[k\right]+2\pi\Delta {f}_{d,i}\left[k\right]T\right){\text{cos}}\left(\Delta {\phi }_{i}\left[k\right]+2\pi\Delta {f}_{d,i}\left[k-1\right]T\right)\right)\\& -{A}_{NLOS,i}^{2}{R}_{i}^{2}\left(\Delta {\tau }_{i}[k]\right)\left({\text{sin}}\left(\Delta {\phi }_{i}\left[k\right]+2\pi\Delta {f}_{d,i}\left[k-1\right]T\right){\text{cos}}\left(\Delta {\phi }_{i}\left[k\right]+2\pi\Delta {f}_{d,i}\left[k\right]T\right)\right)\end{aligned}$$
(A.5)
$$\begin{aligned}{P}_{dot,i}\left[k\right] & \approx {A}_{LOS,i}^{2}\\& + {A}_{LOS,i}{A}_{NLOS,i}{R}_{i}\left(\Delta {\tau }_{i}[k]\right)\left({\text{cos}}\left(\Delta {\phi }_{i}\left[k\right]+2\pi\Delta {f}_{d,i}\left[k\right]T\right)+{\text{cos}}\left(\Delta {\phi }_{i}\left[k\right]+2\pi\Delta {f}_{d,i}\left[k-1\right]T\right)\right)\\& + {A}_{NLOS,i}^{2}{R}_{i}^{2}\left(\Delta {\tau }_{i}[k]\right)\left({\text{cos}}\left(\Delta {\phi }_{i}\left[k\right]+2\pi\Delta {f}_{d,i}\left[k\right]T\right){\text{cos}}\left(\Delta {\phi }_{i}\left[k\right]+2\pi\Delta {f}_{d,i}\left[k-1\right]T\right)\right)\\& + {A}_{NLOS,i}^{2}{R}_{i}^{2}\left(\Delta {\tau }_{i}[k]\right)\left({\text{sin}}\left(\Delta {\phi }_{i}\left[k\right]+2\pi\Delta {f}_{d,i}\left[k\right]T\right){\text{sin}}\left(\Delta {\phi }_{i}\left[k\right]+2\pi\Delta {f}_{d,i}\left[k-1\right]T\right)\right)\end{aligned}$$
(A.6)

They are simplified to:

$$\begin{aligned}{P}_{cross,i}\left[k\right]&\approx 2{A}_{LOS,i}{A}_{NLOS,i}{R}_{i}\left(\Delta {\tau }_{i}[k]\right){\text{cos}}\left(\Delta {\phi }_{i}\left[k\right]+2\pi\Delta {f}_{d,i}\left[k\right]T\right){\text{sin}}\left(\pi\Delta {f}_{d,i}[k]T\right)\\& + {A}_{NLOS,i}^{2}{R}_{i}^{2}\left(\Delta {\tau }_{i}[k]\right){\text{sin}}\left(2\mathrm{\pi \Delta }{f}_{d,i}[k]T\right)\end{aligned}$$
(A.6)

and

$$\begin{aligned} P_{{{dot,i}}} \left[ k \right]& \approx A_{{{LOS,i}}}^{2} \\ & + 2A_{{{LOS,i}}} A_{{{NLOS,i}}} R_{i} \left( {\Delta \tau_{i} \left[ k \right]} \right)\cos \left( {\Delta \phi_{i} \left[ k \right] + 2\pi \Delta f_{d,i} \left[ k \right]T} \right)\cos \left( {\pi \Delta f_{d,i} \left[ k \right]T} \right) \\ & + A_{{{NLOS,i}}}^{2} R_{i}^{2} \left( {\Delta \tau_{i} \left[ k \right]} \right)\cos \left( {2\pi \Delta f_{d,i} \left[ k \right]T} \right) \\ \end{aligned}$$
(A.7)

Assuming that \(2\mathrm{\pi \Delta }{f}_{d,i}[k]T\) is relatively small, then \({\text{sin}}\left(2\pi \Delta {f}_{d,i}\left[k\right]T\right)\approx 2\mathrm{\pi \Delta }{f}_{d,i}[k]T\), and \({\text{cos}}\left(2\pi \Delta {f}_{d,i}\left[k\right]T\right)\approx 1\). Therefore, the Doppler error expression is simplified to:

$$\begin{array}{*{20}c} {\delta f_{d,i} \approx \frac{1}{2\pi T}\arctan \left( {\frac{{\alpha_{i} R_{i} \left( {{\Delta }\tau_{i} \left[ k \right]} \right)\left( {\cos \left( {{\Delta }\phi_{i} \left[ k \right] + 2\pi {\Delta }f_{d,i} \left[ k \right]T} \right) + \alpha_{i} R_{i} \left( {{\Delta }\tau_{i} \left[ k \right]} \right)} \right)}}{{1 + \alpha_{i} R_{i} \left( {{\Delta }\tau_{i} \left[ k \right]} \right)\left( {2\cos \left( {{\Delta }\phi_{i} \left[ k \right] + 2\pi {\Delta }f_{d,i} \left[ k \right]T} \right) + \alpha_{i} R_{i} \left( {{\Delta }\tau_{i} \left[ k \right]} \right)} \right)}}2\pi {\Delta }f_{d,i} \left[ k \right]T} \right)} \\ \end{array}$$
(A.8)

Finally, by taking simplification of \({\text{sin}}\left(2\pi \Delta {f}_{d,i}\left[k\right]T\right)\) and \({\text{cos}}\left(2\pi \Delta {f}_{d,i}\left[k\right]T\right)\), we can obtain the Doppler error based on (A.8).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Yang, R. & Zhan, X. Characterization of multi-band GNSS multipath in urban canyons using the 3D ray-tracing method. GPS Solut 28, 49 (2024). https://doi.org/10.1007/s10291-023-01590-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10291-023-01590-7

Keywords

Navigation