Log in

A three-layer model of hydrodynamic processes in the Cyprus Eddy system

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

A three-layer quasi-geostrophic model was developed to examine the topographic eddies generated around the Eratosthenes Seamount in the southeastern Levantine basin, particularly the dipolar vortex structure, consisting of the anticyclonic Cyprus Eddy and a smaller-scale cyclone. The numerical experiments were carried out using the Contour Dynamics Method, imposing an eastward flow with different inclinations and intensities along the western boundary of the model domain to imitate the Mid-Mediterranean Jet. The dual nature of topographic eddies was previously reported to be generated frequently in a homogeneous ocean approximation, but in the current study, the consideration of baroclinicity primarily simulated a single vortex attributed to the Cyprus Eddy with the small-scale cyclone to be generated occasionally. Also, it was demonstrated that the direction and intensity of the imposed eastward flow along the western boundary of the model domain are the main factors in the formation of the cyclonic vortex. The modeling results showed a qualitative agreement with the geostrophic patterns derived from in-situ observations in the wider sea area of the Eratosthenes Seamount.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The datasets analyzed during the current study are available from the corresponding author on request.

References

  • Alhammoud BK, Béranger K, Mortier L, Crépon M, Dekeyser I (2005) Surface circulation of the Levantine Basin: comparison of model results with observations. Progr Oceanogr 66(2–4):299–320

    Google Scholar 

  • Brenner S (1989) Structure and evolution of warm core eddies in the eastern Mediterranean Levantine Basin. J Geophys Res 94(C9):12.593-12.602

    Google Scholar 

  • Brenner S (1993) Long-term evolution and dynamics of a persistent warm core eddy in the Eastern Mediterranean Sea. Deep-Sea Res II40:1193–1206

    Google Scholar 

  • Brenner S, Rozentraub Z, Bishop J, Krom M (1991) The mixed–layer/thermocline cycle of a persistent warm core eddy in the eastern Mediterranean. Dyn Atmos Oceans 15(3–5):457–476

    Google Scholar 

  • Egorova VM, Zyryanov VN, Sokolovskiy MA (2022) The hydrodynamic theory of the Cyprus Eddy. Ocean Dyn 72(1):1–20. https://doi.org/10.1007/s10236-021-01484-7

    Article  Google Scholar 

  • Filyushkin BN, Sokolovskiy MA, Kozhelupova NG, Vagina VM (2010) Dynamics of intrathermocline lenses. Doklady Earth Sci 434(part 2):1377–1380

    Google Scholar 

  • Fusco G, Manzella GMR, Cruzado A, Gaĉic M, Gasparini GP, Kovaĉeviċ V, Millot C, Tziavos C, Velasquez ZR, Walne A, Zervakis V, Zodiatis G (2003) Variability of mesoscale features in the Mediterranean Sea fromXBT data analysis. Ann Geophys 21:21–32

    Google Scholar 

  • Golnaraghi M and Robinson AR (1994) Dynamical studies of the Eastern Mediterranean circulation. In: Malanotte-Rizzoli P and Robinson AR (eds) Ocean processes in climate dynamics: global and mediterranean examples. NATO ASI Series, vol 419. Springer, Dordrecht https://doi.org/10.1007/978-94-011-0870-6_17

  • Groom S, Herut B, Brenner S, Zodiatis G, Psarra S, Kress N, Krom MD, Law CS, Drakopoulos P (2005) Satellite-derived spatial and temporal biological variability in the Cyprus Eddy. Deep-Sea Res II 52:2990–3010

    Google Scholar 

  • Hamad N, Millot C, Taupier-Letage I (2006) The surface circulation in the eastern basin of the Mediterranean Sea. Sci Mar 70(3):457–503

    Google Scholar 

  • Hayes DR, Dobricic S, Gildor H, Matsikaris A (2019) Operational assimilation of glider temperature and salinity for an improved description of the Cyprus eddy. Deep-Sea Res Part II 164:41–53

    Google Scholar 

  • Hayes DR, Zodiatis G, Konnaris G, Hannides A, Solovyov D, and Testor P (2011) Glider transects in the Levantine Sea: characteristics of the warm core Cyprus eddy. OCEANS 2011 IEEE - Spain, 1–9 https://doi.org/10.1109/Oceans-Spain.2011.6003393

  • Hayes DR, Hannides A, Gergiou G, Testor P, Gildor H, and Zodiatis G (2014) Description of the long-lived subsurface mesoscale eddy south of Cyprus. 6th EGO meeting and final Symposium of the COST Action ES0904, Kiel, Germany ⟨hal-01139537⟩

  • Hecht A, Pinardi N, Robinson AR (1998) Currents, water masses, eddies, and jets in the Mediterranean Levantine Basin. J Phys Oceanogr 18(10):1320–1353

    Google Scholar 

  • Holmboe J (1968) Instability of baroclinic three-layered models of the atmosphere. Geophys Publ 28:1–27

    Google Scholar 

  • Huppert HE (1975) Some remarks on the initiation of inertial Taylor columns. J Fluid Mech 67:397–412

    Google Scholar 

  • Huppert HE, Bryan K (1976) Topographically generated eddies. Deep Sea Res 23(8):655–679

    Google Scholar 

  • Ikeda M (1983) Linear instability of a current flowing along a bottom slo** using a three-layer model. J Phys Oceanogr 13(2):208–223

    Google Scholar 

  • Jacobs SJ (1964) On stratified flow over bottom topography. J Marine Res 22(3):223–235

    Google Scholar 

  • Koshel KV, Ryzhov EA, Zyryanov VN (2014a) Toroidal vortices over isolated topography in geophysical flows. Fluid Dyn Res 46(3):031405

    Google Scholar 

  • Koshel KV, Ryzhov EA, Zyryanov VN (2014b) A modification of the invariant imbedding methods for a singular boundary value problem. Commun Nonlinear Sci Numer Simulat 19:459–470

    Google Scholar 

  • Kozlov VF (1968) The use of one-parameter models to the study of density thermohaline circulation in the ocean of finite depth. Izv USSR Acad Sci Atmos Ocean Phys 4(6):622–633

    Google Scholar 

  • Kozlov VF (1983) The method of contour dynamics in model problems of the ocean topographic cyclogenesis. Izvestiya Atmos Ocean Phys 19(8):635–640

    Google Scholar 

  • Kozlov VF, Sokolovskiy MA (1978) Stationary motion of a stratified fluid above a rough bottom (geostrophic approximation on the beta-plane). Oceanology 8(4):383–386

    Google Scholar 

  • Kozlov VF, Makarov VG, Sokolovskiy MA (1986) Numerical model of the baroclinic instability of axially symmetric eddies in two-layer ocean. Izvestiya Atmos Ocean Phys 22(8):674–678

    Google Scholar 

  • Kozlov VF (1984) Models of the topographic vortices in ocean. Nauka, Moscow (In Russian)

  • Krom MD, Woodward EMS, Herut B, Kress N, Carbo P, Mantoura RFC, Spyres G, Thingstad TF, Wassmann P, Wexels-Riser C, Kitidis V, Law CS, Zodiatis G (2005) Nutrient cycling in the southeast Levantine Basin of the eastern Mediterranean: results from a phosphorus starved system. Deep-Sea Res II 52:2879–2896

    Google Scholar 

  • Kubryakov AI and Shapiro NB (1999) The study of a persistent warm core eddy in winter 1993 and the water mass formation in the Eastern Mediterranean Sea. In: Malanotte-Rizzoli P and Eremeev VN (eds) The Eastern Mediterranean as a laboratory basin for the assessment of contrasting ecosystems. – Springer, Dordrecht 19–31

  • Makarov VG (1991) A computational algorithm of the method of contour dynamics with changeable topology of the domains under Study. Model Mekh 5(22 №4):83–95

    Google Scholar 

  • Mauri E, Sitz L, Gerin R, Poulain P-M, Hayes D, Gildor H (2019) On the variability of the circulation and water mass properties in the Eastern Levantine Sea between September 2016–August 2017. Water 11(9):1741. https://doi.org/10.3390/w11091741

    Article  Google Scholar 

  • Menna M, Poulain PM, Zodiatis G, Gertman I (2012) On the surface circulation of the Levantine sub-basin derived from Lagrangian drifters and satellite altimetry data. Deep-Sea Res I 65:46–58

    Google Scholar 

  • Menna M, Gerin R, Notarstefano G, Mauri E, Bussani A, Pacciaroni M, Poulain PM (2021) On the circulation and thermohaline properties of the Eastern Mediterranean Sea. Front Mar Sci 8(671469):1–19. https://doi.org/10.3389/fmars.2021.671469

    Article  Google Scholar 

  • Menna M, Gačić M, Martellucci R, Notarstefano G, Fedele G, Mauri E, Gerin R, Poulain PM (2022) Climatic, decadal, and interannual variability in the upper layer of the Mediterranean Sea using remotely sensed and in-situ data. Remote Sens 14(6):1322. https://doi.org/10.3390/rs14061322

    Article  Google Scholar 

  • Monin AS, Neiman VG, Filyushkin BN (1970) Density stratifcation in the ocean. Dokl Akad Nauk USSR 191:1277–1279

    Google Scholar 

  • Oulhen E, Reinaud JN, Carton X (2022) Formation of small-scale vortices in the core of a large merged vortex. Geophys Astrophys Fluid Dyn. https://doi.org/10.1080/03091929.2022.2074983

    Article  Google Scholar 

  • Ovchinnikov IM, Plakhin E, Moskalenko LV, Neglyad KV, Osadchiy AS, Fedoseyev AF, and Voytova KV (1976) Hydrology of the Mediterranean Sea. Gidrometeoizdat, Leningrad. 375 p (in Russian)

  • Ozer T, Gertman I, Kress N, Silverman J, Herut B (2017) Interannual thermohaline (1979–2014) and nutrient (2002–2014) dynamics in the Levantine surface and intermediate water masses, SE Mediterranean Sea. Global Planet Change 151:60–67

    Google Scholar 

  • Özsoy E (1993) A synthesis of Levantine Basin circulation and hydrography, 1985–1990. Deep-Sea Res II 40(6):1075–1119

    Google Scholar 

  • Özsoy E, Hecht A, Unluata U (1989) Circulation and hydrography of the Levantine Basin-Results of POEM coordinated experiments 1985–1986. Prog Oceanogr 22:125–170

    Google Scholar 

  • Pinardi N, Masetti E (2000) Variability of the large scale general circulation of the Mediterranean Sea from observations and modelling: a review. Palaeogeogr Palaeoclimatol Palaeoecol 158(3–4):153–173

    Google Scholar 

  • Pinardi N, Zavatarelli M, Adani M, Coppini G, Fratianni C, Oddo P, Simoncelli S, Tonani M, Lyubartsev V, Dobricic S (2015) Mediterranean Sea large-scale low-frequency ocean variability and water mass formation rates from 1987 to 2007: A retrospective analysis. Prog Oceanogr 132:318–332. https://doi.org/10.1016/j.pocean.2013.11.003

    Article  Google Scholar 

  • Pullin DL (1992) Contour dynamics methods. Annu Rev Fluid Mech 24:89–115

    Google Scholar 

  • Reinaud JN (2022) Finite-core quasi-geostrophic circular vortex arrays with a central vortex. AIP Adv 12:025302. https://doi.org/10.1063/5.0081687

    Article  Google Scholar 

  • Robinson AR, Hecht A, Pinardi N, Bishop Y, Leslie WG, Rosentroub Z, Mariano AJ, Brenner S (1987) Small synoptic/mesoscale eddies: the energetic variability of the Eastern Levantine Basin. Nature 327(6118):131–134

    Google Scholar 

  • Robinson AR, Malanotte-Rizzoli P, Hecht A, Michelato A, Roether W, Theocharis A, Ünlüata Ü, Pinardi N, Artegiani A, Bergamasco A, Bishop J, Brenner S, Christianidis S, Gacic M, Georgopoulos D, Golnaraghi M, Hausmann M, Junghaus HG, Lascaratos A, Latif MA, Leslie WG, Lozano CJ, Og T, Özso E, Papageorgiou E, Paschini E, Rozentroub Z, Sansone E, Scarazzato P, Schlitzer R, Spezie GC, Tziperman E, Zodiatis G, Athanassiadou L, Gerges M, Osman M (1992) General circulation of the Eastern Mediterranean. Earth Sci Rev 32:285–309

    Google Scholar 

  • Ryzhov EA, Sokolovskiy MA (2016) Interaction of two-layer vortex pair with a submerged cylindrical obstacle in a two-layer rotating fluid. Phys Fluids 28:056602

    Google Scholar 

  • Santeva EK, Bashmachnikov IL, Sokolovskiy MA (2021) On the stability of the Lofoten vortex in the Norwegian Sea. Oceanology 61(3):308–318

    Google Scholar 

  • Schlitzer R (2023) Ocean data view, https://odv.awi.de

  • Schroeder K and Chiggiato J (2022) Oceanography of the Mediterranean Sea. Elsevier. ISBN: 978–0–12–823692–5.561

  • Schroeder K, Garcìa-Lafuente J, Josey SA, Artale V, Nardelli BB, Carrillo A, Gacic M, Gasparini GP, Herrmann M, Lionello P, Ludwig W, Millot C, Özsoy E, Pisacane G, Sánchez-Garrido JC, Sannino G, Santoleri R, Somot S, Struglia M, Stanev E, Taupier-Letage I, Tsimplis MN, Vargas-Yáñez M, Zervakis V, and Zodiatis G (2012) Circulation of the Mediterranean Sea and its variability. In: Climate of the Mediterranean Region. Lionello P (Ed), Elsevier, Amsterdam, 592 https://doi.org/10.1016/B978-0-12-416042-2.00003-3

  • Shteinbuch-Fridman B, Makarov V, Kizner Z (2017) Transitions and oscillatory regimes in two-layer geostrophic hetons and tripoles. J Fluid Mech 810:535–553

    Google Scholar 

  • Simoncelli S, Fratianni C, Pinardi N, Grandi A, Drudi M, Oddo P (2014) Mediterranean Sea physical reanalysis (MEDREA 1987–2017) (Version 1) (Copernicus Monitoring Environment Marine Service (CMEMS))

  • Smeed DA (1988) Baroclinic instability of three-layer flows. Part I: Linear stability. J Fluid Mech 194:217–231

    Google Scholar 

  • Sokolovskiy MA (1991) Modeling triple-layer vortical motions in the ocean by the Contour Dynamics Method. Izvestiya Atmos Ocean Phys 27(5):380–388

    Google Scholar 

  • Sokolovskiy MA (1997a) Stability of an axisymmetric three-layer vortex. Izvestiya Atmos Ocean Phys 33(1):16–26

    Google Scholar 

  • Sokolovskiy MA (1997b) Stability analysis of the axisymmetric three-layered vortex using contour dynamics method. Comput Fluid Dyn J 6(2):133–156

    Google Scholar 

  • Sokolovskiy MA, Filyushkin BN (2015) Interaction between synoptic gyres and intrathermocline lenses. Oceanology 55(5):661–666

    Google Scholar 

  • Sokolovskiy MA, Filyushkin BN, Carton XJ (2013) Dynamics of intrathermocline vortices in a gyre flow over a seamount chain. Ocean Dyn 63(7):741–760

    Google Scholar 

  • Sokolovskiy MA, Carton XJ, Filyushkin BN, Yakovenko OI (2016) Interaction between a surface jet and subsurface vortices in a three-layer quasi-geostrophic model. Geophys Astrophys Fluid Dyn 110(3):201–223

    Google Scholar 

  • Sokolovskiy MA, Carton XJ, Filyushkin BN (2020) Mathematical modeling of vortex interaction using a three-layer quasi-geostrophic model. Part 2: Finite-core-vortex approach and oceanographic application. Mathematics 8(8):1267. https://doi.org/10.3390/math8081267

    Article  Google Scholar 

  • Sokolovskiy MA, Verron J (2014) Dynamics of vortex structures in a stratified rotating fluid. Atmos and Oceanogr Sci Lib 47 Springer Swidzerland 382

  • Taylor GI (1923) Experiments on the motion of solid bodies in rotating fluids. Proc Roy Soc Lond 104:213–218

    Google Scholar 

  • Waugh DW (1992) The efficiency of symmetric vortex merger. Phys Fluids A 4(8):1745–1758

    Google Scholar 

  • Zabusky NJ, Hughes MH, Roberts KV (1979) Contour dynamics for Euler equations in two dimensions. J Comput Phys 30(1):96–106

    Google Scholar 

  • Zodiatis G, Theodorou A, Demetropoulos A (1998) Hydrography and circulation south of Cyprus in late summer 1995 and in spring 1996. Oceanol Acta 21(3):447–458

    Google Scholar 

  • Zodiatis G, Drakopoulos P, Brenner S, Groom S (2005a) Variability of the Cyprus warm core Eddy during the CYCLOPS project. Deep-Sea Res 52(2):2897–2910

    Google Scholar 

  • Zodiatis G, Brenner S, Gertman I, Ozer T, Simoncelli S, Ioannou M, Savva S (2023) Twenty years of in-situ monitoring in the south-eastern Mediterranean Levantine Basin: basic elements of the thermohaline structure and of the mesoscale circulation during 1995–2015. Frontiers Marine Science. Clim Chang Impacts Mediterr Coast Transl Areas: Assessment, Projection, and Adaptation 9:1074504. https://doi.org/10.3389/fmars.2022.1074504

    Article  Google Scholar 

  • Zodiatis G, Drakopoulos P, Gertman I, Brenner S, Hayes D (2005b) The Atlantic Water Mesoscale Hydrodynamics in the Levantine Basin. In Strategies for understanding mesoscale processes, F. Briand (Ed), CIESM Monographs no. 37, Monaco

  • Zodiatis G, Gertman I, Poulain PM, and Menna M (2015) The general circulation in the SE Levantine. PERSEUS Conference Proceedings: Integrated Marine Research in the Mediterranean and Black Sea, Brussels, 231–232

  • Zyryanov VN (1995) Topographic eddies in sea currents dynamics. IWP RAS, Moscow (in Russian)

  • Zyryanov VN (2006) Topographic eddies in a stratified ocean. Reg Chaot Dyn 11(4):491–521

    Google Scholar 

  • Zyryanov VN (2011) Secondary toroidal vortices above seamounts. J Marine Res 69(2–3):463–481

    Google Scholar 

  • Zyryanov VN (2015) Experimental studies of vortex tori above bottom perturbations in homogeneous rotational fluid. Proc Geoenvir 2(2):46–54 (in Russian)

    Google Scholar 

  • Zyryanov VN, Egorova VM (2022) Theoretical and laboratory modeling of topographic vortex bifurcation on vortex tori over two-stage axisymmetric elevation. Water Res 49(2):173–183

    Google Scholar 

  • Zyryanov VN, Chebanova MK, Zyryanov DV (2022) Canyon vortices: Application of the theory of topographic vortices to the phenomenon of ice rings in Baikal. Water Res 49(2):163–172

    Google Scholar 

Download references

Funding

The work of VME and MAS was carried out in the frame of the Program No. FMWZ-2022–0001 (State Registration No. 122041100222–7). VME and MAS were supported by the Russian Science Foundation (RSF project No. 22–27-00431), and MAS was supported also by Russian Foundation for Basic Research (RFBR project No. 20–05-00083).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Zodiatis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Alejandro Orfila

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egorova, V.M., Sokolovskiy, M.A. & Zodiatis, G. A three-layer model of hydrodynamic processes in the Cyprus Eddy system. Ocean Dynamics 74, 19–36 (2024). https://doi.org/10.1007/s10236-023-01584-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-023-01584-6

Keywords

Navigation