Log in

A three-dimensional modeling study on eddy-mean flow interaction between a Gaussian-type anticyclonic eddy and Kuroshio

  • Original Article
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

The Princeton ocean model is employed to study the energy balance of a fast-moving anticyclonic eddy (AE) during eddy-mean flow interaction. The AE is initialized with an axisymmetric Gaussian-type temperature profile and is placed to the east of the Philippine Islands. An energy analysis suggests that the advection term, pressure work and friction term play dominant roles in the initial eddy decay. During the strong interaction stage, barotropic instability (BTI) becomes the main force for the eddy kinetic energy (EKE) production, with the largest positive BTI in the interaction zone, which means that the eddy always obtains kinetic energy from the Kuroshio during this stage. Most of the EKE dissipation, the large conversion from the eddy available potential energy to the EKE and that from the mean kinetic energy to the EKE all occur at the upper layer during the strong interaction stage. When the AE interacts with the mean flow on the eastern side of the Kuroshio, whether the AE gains kinetic energy from the Kuroshio or loses kinetic energy to the Kuroshio is mainly determined by its shape in the interaction zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Beckmann A, Böning CW, Brügge B, Stammer D (1994) On the generation and role of eddy variability in the central North Atlantic Ocean. J Geophys Res 99(C10):20381–20391

    Article  Google Scholar 

  • Bell GI, Pratt LJ (1992) The interaction of an eddy with an unstable jet. J Phys Oceanogr 22:1229–1244

    Article  Google Scholar 

  • Blumberg AF, Mellor GL (1987) A description of a three-dimensional coastal ocean circulation model. In: Heaps NS (ed) Three-dimensional coastal ocean models. American Geophysical Union, Washington DC, pp 1–16

    Google Scholar 

  • Böning CW, Budich RG (1992) Eddy dynamics in a primitive equation model: sensitivity to horizontal resolution and friction. J Phys Oceanogr 22(4):361–381

    Article  Google Scholar 

  • Chang YL, Oey LY (2012) The Philippines–Taiwan oscillation: monsoonlike interannual oscillation of the subtropical–tropical western North Pacific wind system and its impact on the ocean. J Clim 25:1597–1618. doi:10.1175/JCLI-D-11-00158.1

    Article  Google Scholar 

  • Chelton DB, Schlax MG, Samelson RM, de Szoeke RA (2007) Global observations of large oceanic eddies. Geophys Res Lett 34:L15606. doi:10.1029/2007GL030812

    Article  Google Scholar 

  • Chen GX, Hu P, Hou YJ, Chu XQ (2011) Intrusion of the Kuroshio into the South China Sea, in September 2008. J Oceanogr 67:439–448

    Article  Google Scholar 

  • Chen GX, Wang D, Hou YJ (2012) The features and interannual variability mechanism of mesoscale eddies in the Bay of Bengal. Cont Shelf Res 47:178–185

    Article  Google Scholar 

  • Curchitser EN, Haidvogel DB, Hermann AJ, Dobbins EL, Powell TM, Kaplan A (2005) Multi-scale modeling of the North Pacific Ocean: assessment and analysis of simulated basin-scale variability. J Geophys Res 110:C11021. doi:10.1029/2005JC002902

    Article  Google Scholar 

  • Cushman-Roisin B, Chassignet EP, Tang B (1990) Westward motion of mesoscale eddies. J Phys Oceanogr 20:758–768

    Article  Google Scholar 

  • da Silva AM, Young CC, Levitus S (1994) Atlas of surface marine data 1994, vol 1. Algorithms and Procedures, NOAA Atlas NESDIS 6, US Dep of Comm, Washington DC, p 83

  • Early JJ, Samelson RM, Chelton DB (2011) The evolution and propagation of quasigeostrophic ocean eddies. J Phys Oceanogr 41:1535–1555

    Article  Google Scholar 

  • Ezer T, Mellor GL (2000) Sensitivity studies with the North Atlantic sigma coordinate Princeton Ocean Model. Dyn Atmos Oceans 32:185–208

    Article  Google Scholar 

  • Fang G, Susanto D, Soesilo I, Zheng Q, Qiao FL, Wei ZX (2005) A note on the South China Sea shallow interocean circulation. Adv Atmos Sci 22(6):945–954

    Google Scholar 

  • Fu L, Keffer T, Niiler P, Wunsch C (1982) Observations of mesoscale variability in the western North Atlantic: a comparative study. J Mar Res 40:809–848

    Google Scholar 

  • Geng W, **e Q, Chen GX, Zu T, Wang DX (2016) Numerical study on the eddy–mean flow interaction between a cyclonic eddy and Kuroshio. J Oceanogr 72:727–745. doi:10.1007/s10872-016-0366-0

    Article  Google Scholar 

  • Hwang C, Wu CR, Kao R (2004) TOPEX/Poseidon observations of mesoscale eddies over the subtropical countercurrent: kinematic characteristics of an anticyclonic eddy and a cyclonic eddy. J Geophys Res 109:C08013. doi:10.1029/2003JC002026

    Article  Google Scholar 

  • Itoh S, Sugimoto T (2001) Numerical experiments on the movement of a warm–core ring with the bottom slope of a western boundary. J Geophys Res 106(C11):26851–26862

    Article  Google Scholar 

  • Ivchenko VO, Treguier AM, Best SE (1997) A kinetic energy budget and internal instabilities in the Fine Resolution Antarctic Model. J Phys Oceanogr 27:5–22

    Article  Google Scholar 

  • Jia Y, Liu Q (2004) Eddy shedding from the Kuroshio bend at Luzon Strait. J Oceanogr 60(6):1063–1069

    Article  Google Scholar 

  • Johns WE, Lee TN, Zhang D, Zantopp R (2001) The Kuroshio east of Taiwan: moored transport observations from the WOCE PCM–1 array. J Phys Oceanogr 31:1031–1053

    Article  Google Scholar 

  • Kobashi F, Kawamura H (2002) Seasonal variation and instability nature of the North Pacific Subtropical Counter current and the Hawaiian Lee Counter-current. J Geophys Res 107(C11):3185. doi:10.1029/2001JC001225

    Article  Google Scholar 

  • Kuo YC, Chern CS (2011) Numerical study on the interactions between a mesoscale eddy and a western boundary current. J Oceanogr 67(3):263–272

    Article  Google Scholar 

  • Lee IH, Ko DS, Wang YH, Centurioni L, Wang DP (2013) The mesoscale eddies and Kuroshio transport in the western North Pacific east of Taiwan from 8-year (2003–2010) model reanalysis. Ocean Dyn 63:1027–1040. doi:10.1007/s102360-0012-0643-z

    Article  Google Scholar 

  • Levitus S, Burgett R, Boyer T (1994) World Ocean Atlas 1994, vol 3. Salinity, NOAA Atlas NESDIS 3, Natl Oceanic and Atmos Admin, Silver Spring

  • Lien RC, Ma B, Cheng YH, Ho CR, Qiu B, Lee CM, Chang MH (2014) Modulation of Kuroshio transport by mesoscale eddies at the Luzon Strait entrance. J Geophys Res Oceans 119:2129–2142. doi:10.1002/2013JC009548

    Article  Google Scholar 

  • Liu Y, Dong C, Guan Y, Chen D, McWilliams J (2012) Eddy analysis in a zonal band in the North Pacific Ocean. Deep Sea Res I 68:54–67

    Article  Google Scholar 

  • Ma XH, **g Z, Chang P, Liu X, Montuoro R, Small RJ, Bryan FO, Greatbatch RJ, Brandt P, Wu DX, Lin XP, Wu LX (2016) Western boundary currents regulated by interaction between ocean eddies and the atmosphere. Nature 535:533–537. doi:10.1038/nature18640

    Article  Google Scholar 

  • Matsuura T (1995) The evolution of frontal-geostrophic vortices in a two-layer ocean. J Phys Oceanogr 25:2298–2318

    Article  Google Scholar 

  • Matsuura T, Yamagata T (1982) On the evolution of nonlinear planetary eddies larger than the radius of deformation. J Phys Oceanogr 12:440–456

    Article  Google Scholar 

  • Mellor GL (2004) User’s guide for a three-dimensional, primitive equation, numerical ocean model. Rep, Program in Atmospheric and Oceanic Science. Princeton University, Princeton

    Google Scholar 

  • Qiu B, Chen S (2010) Interannual variability of the North Pacific Subtropical Countercurrent and its associated mesoscale eddy field. J Phys Oceanogr 40:213–225. doi:10.1175/2009JPO4285.1

    Article  Google Scholar 

  • Qu T, Mitsudera H, Yamagata T (2000) Intrusion of the North Pacific waters into the South China Sea. J Geophys Res 105:6415–6424. doi:10.1029/1999JC900323

    Article  Google Scholar 

  • Qu T, Du Y, Meyers G, Ishida A, Wang D (2005) Connecting the tropical Pacific with Indian Ocean through South China Sea. Geophys Res Lett 32:L24609. doi:10.1029/2005GL024698

    Article  Google Scholar 

  • Qu T, Girton JB, Whitehead JA (2006) Deepwater overflow through Luzon Strait. J Geophys Res 111:C01002. doi:10.1029/2005JC003139

    Article  Google Scholar 

  • Roemmich D, Gilson J (2001) Eddy transport of heat and thermocline waters in the North Pacific: a key to interannual/decadal climate variability? J Phys Oceanogr 31:675–687

    Article  Google Scholar 

  • Sheremet VA (2001) Hysteresis of a western boundary current lea** across a gap. J Phys Oceanogr 31:1247–1259

    Article  Google Scholar 

  • Sheu WJ, Wu CR, Oey LY (2010) Blocking and westward passage of eddies in the Luzon strait. Deep Sea Res II 57:1783–1791

    Article  Google Scholar 

  • Tozuka T, Qu T, Yamagata T (2007) Effect of South China Sea throughflow on the Makassar Strait throughflow. Geophys Res Lett 34:L12612. doi:10.1029/2007GL030420

    Article  Google Scholar 

  • Vallis GK (2006) Atmospheric and oceanic fluid dynamics: fundamentals and large-scale circulation. Cambridge University Press, Cambridge, pp 251–265

    Book  Google Scholar 

  • Vandermeirsch FO, Carton XJ, Morel YG (2003) Interaction between an eddy and a zonal jet Part I. One and a half layer model. Dyn Atmos Ocean 36:247–270

    Article  Google Scholar 

  • Xue HJ, Bane J (1997) A numerical investigation of the Gulf stream and its meanders in response to cold air outbreaks. J Phys Oceanogr 27(12):2606–2629

    Article  Google Scholar 

  • Yang Y, Liu CT, Hu JH, Koga M (1999) Taiwan current (Kuroshio) and im**ing eddies. J Oceanogr 55:609–617

    Article  Google Scholar 

  • Yang H, Liu Q, Liu Z, Wang D, Liu X (2002) A general circulation model study of the dynamics of the upper ocean circulation of the South China Sea. J Geophys Res 107(C7):3085. doi:10.1029/2001JC001084

    Article  Google Scholar 

  • Yu Z, Shen S, McCreary JP, Yaremchuk M, Furue R (2007) South China Sea throughflow as evidenced by satellite images and numerical experiments. Geophys Res Lett 34:L01601. doi:10.1029/2006GL028103

    Google Scholar 

  • Yuan D, Li R (2008) Dynamics of eddy-induced Kuroshio variability in Luzon Strait. J Trop Oceanogr 27:1–9 (in Chinese with English abstract)

    Google Scholar 

  • Yuan D, Wang Z (2010) Hysteresis and dynamics of a western boundary current flowing by a gap forced by im**ement of mesoscale eddies. J Phys Oceanogr 41:878–888. doi:10.1175/2010JPO4489.1

    Article  Google Scholar 

  • Yuan D, Han W, Hu D (2006) Surface Kuroshio path in the Luzon Strait area derived from satellite remote sensing data. J Geophys Res 111:C11007. doi:10.1029/2005JC003412

    Article  Google Scholar 

  • Zhai XM, Johnson HL, Marshall DP (2010) Significant sink of ocean-eddy energy near western boundaries. Nat Geosci 3:608–612

    Article  Google Scholar 

  • Zhang DX, Lee TN, Johns WE (2001) The Kuroshio east of Taiwan: modes of variability and relationship to interior mesoscale eddies. J Phys Oceanogr 31:1054–1074

    Article  Google Scholar 

  • Zheng Q, Tai CK, Hu JY, Lin HY, Zhang RH, Su FC, Yang XF (2011) Satellite altimeter observations of nonlinear Rossby eddy–Kuroshio interaction at the Luzon Strait. J Oceanogr 67(4):365–376

    Article  Google Scholar 

  • Zhuang W, **e S, Wang D, Taguchi B, Aiki H, Sasaki H (2010) Intraseasonal variability in sea surface height over the South China Sea. J Geophys Res 115:C04010. doi:10.1029/2009JC005647

    Article  Google Scholar 

  • Zu T, Wang D, Yan C, Belkin I, Zhuang W, Chen J (2013) Evolution of an anticyclonic eddy southwest of Taiwan. Ocean Dyn 63(5):519–531

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research & Development Plan of China (grant no. 2016YFC1401703), the National Natural Science Foundation of China (Grant Nos. 41506002, 41576012, 41276024, 41676015, 41476011 and 41676010), the Strategic Priority Research Program of the Chinese Academy of Sciences (grant no. XDA11010302), the Knowledge Innovation Engineering Frontier Project of Sanya Institute of Deep Sea Science and Engineering (Grant No. SIDSSE-201205) and the Sanya and Chinese Academy of Sciences Cooperation Project (Grant No. 2013YD77).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang **e or Dongxiao Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, W., **e, Q., Chen, G. et al. A three-dimensional modeling study on eddy-mean flow interaction between a Gaussian-type anticyclonic eddy and Kuroshio. J Oceanogr 74, 23–37 (2018). https://doi.org/10.1007/s10872-017-0435-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-017-0435-z

Keywords

Navigation