Log in

Pointwise and weighted Hessian estimates for Kolmogorov–Fokker–Planck-type operators

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

In this article, we obtain Hessian estimates for Kolmogorov–Fokker–Planck operators in non-divergence form in several Banach function spaces. Our approach relies on a representation formula and newly developed sparse domination techniques in harmonic analysis. Our result when restricted to weighted Lebesgue spaces yields sharp quantitative Hessian estimates for the Kolmogorov–Fokker–Planck operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anh Bui, T.: The regularity estimates for nondivergence parabolic equations on generalized Orlicz spaces. Int. Math. Res. Not. IMRN 14, 11103–11139 (2021)

    MathSciNet  Google Scholar 

  2. Aimar, H.: Singular integrals and approximate identities on spaces of homogeneous type. Trans. Am. Math. Soc. 292(1), 135–153 (1985)

    MathSciNet  Google Scholar 

  3. Acerbi, E., Mingione, G.: Regularity results for a class of functionals with non-standard growth. Arch. Ration. Mech. Anal. 156(2), 121–140 (2001)

    MathSciNet  Google Scholar 

  4. Acerbi, E., Mingione, G.: Gradient estimates for the \(p(x)\)-Laplacean system. J. Reine Angew. Math. 584, 117–148 (2005)

    MathSciNet  Google Scholar 

  5. Acerbi, E., Mingione, G.: Gradient estimates for a class of parabolic systems. Duke Math. J. 136(2), 285–320 (2007)

    MathSciNet  Google Scholar 

  6. Adimurthi, K., Mengesha, T., Phuc, N.C.: Gradient weighted norm inequalities for linear elliptic equations with discontinuous coefficients. Appl. Math. Optim. 83(1), 327–371 (2021)

    MathSciNet  Google Scholar 

  7. Anceschi, F., Polidoro, S.: A survey on the classical theory for Kolmogorov equation. Matematiche (Catania) 75(1), 221–258 (2020)

    MathSciNet  Google Scholar 

  8. Abedin, F., Tralli, G.: Harnack inequality for a class of Kolmogorov–Fokker–Planck equations in non-divergence form. Arch. Ration. Mech. Anal. 233(2), 867–900 (2019)

    MathSciNet  Google Scholar 

  9. Bramanti, M., Brandolini, L.: Schauder estimates for parabolic nondivergence operators of Hörmander type. J. Differ. Equ. 234(1), 177–245 (2007)

    ADS  Google Scholar 

  10. Benea, C., Bernicot, F.: Conservation de certaines propriétés à travers un contrôle épars d’un opérateur et applications au projecteur de Leray-Hopf. Ann. Inst. Fourier (Grenoble) 68(6), 2329–2379 (2018)

    MathSciNet  Google Scholar 

  11. Bui, T.Q., Bui, T.A., Duong, X.T.: Global regularity estimates for non-divergence elliptic equations on weighted variable Lebesgue spaces. Commun. Contemp. Math. 23(5), 26 (2021)

    MathSciNet  Google Scholar 

  12. Bramanti, M., Cerutti, M.C.: \(W_p^{1,2}\) solvability for the Cauchy–Dirichlet problem for parabolic equations with VMO coefficients. Commun. Part. Differ. Equ. 18(9–10), 1735–1763 (1993)

    Google Scholar 

  13. Bramanti, M., Cupini, G., Lanconelli, E., Priola, E.: Global \(L^p\) estimates for degenerate Ornstein–Uhlenbeck operators with variable coefficients. Math. Nachr. 286(11–12), 1087–1101 (2013)

    MathSciNet  Google Scholar 

  14. Bramanti, M., Cerutti, M.C., Manfredini, M.: \(L^p\) estimates for some ultraparabolic operators with discontinuous coefficients. J. Math. Anal. Appl. 200(2), 332–354 (1996)

    MathSciNet  Google Scholar 

  15. Balci, A.K., Diening, L., Giova, R., di Napoli, A.P.: Elliptic equations with degenerate weights. SIAM J. Math. Anal. 54(2), 2373–2412 (2022)

    MathSciNet  Google Scholar 

  16. Bulíček, M., Diening, L., Schwarzacher, S.: Existence, uniqueness and optimal regularity results for very weak solutions to nonlinear elliptic systems. Anal. PDE 9(5), 1115–1151 (2016)

    MathSciNet  Google Scholar 

  17. Byun, S.-S., Lee, M.: On weighted \(W^{2,p}\) estimates for elliptic equations with BMO coefficients in nondivergence form. Internat J. Math. 26(1), 1550001, 28 (2015)

    Google Scholar 

  18. Byun, S.-S., Lee, M., Ok, J.: \(W^{2, p(\cdot )}\)-regularity for elliptic equations in nondivergence form with BMO coefficients. Math. Ann. 363(3–4), 1023–1052 (2015)

    MathSciNet  Google Scholar 

  19. Byun, S.-S., Lee, M., Ok, J.: Nondivergence parabolic equations in weighted variable exponent spaces. Trans. Am. Math. Soc. 370(4), 2263–2298 (2018)

    MathSciNet  Google Scholar 

  20. Byun, S.-S., Jehan, O.: Regularity results for generalized double phase functionals. Anal. PDE 13(5), 1269–1300 (2020)

    MathSciNet  Google Scholar 

  21. Byun, S.-S., Wang, L.: Elliptic equations with BMO coefficients in Reifenberg domains. Commun. Pure Appl. Math. 57(10), 1283–1310 (2004)

    MathSciNet  Google Scholar 

  22. Byun, S.-S., Wang, L.: Elliptic equations with BMO nonlinearity in Reifenberg domains. Adv. Math. 219(6), 1937–1971 (2008)

    MathSciNet  Google Scholar 

  23. Byun, S.-S.: Elliptic equations with BMO coefficients in Lipschitz domains. Trans. Am. Math. Soc. 357(3), 1025–1046 (2005)

    MathSciNet  Google Scholar 

  24. Caffarelli, L.A.: Interior a priori estimates for solutions of fully nonlinear equations. Ann. Math. (2) 130(1), 189–213 (1989)

    MathSciNet  Google Scholar 

  25. Caffarelli, L.A.: , Interior \(W^{2, p}\) estimates for solutions of the Monge–Ampère equation. Ann. Math. (2) 131(1), 135–150 (1990)

    MathSciNet  Google Scholar 

  26. Coifman, R.R., Fefferman, C.: Weighted norm inequalities for maximal functions and singular integrals. Studia Math. 51, 241–250 (1974)

    MathSciNet  Google Scholar 

  27. Chiarenza, F., Frasca, M., Longo, P.: Interior \(W^{2, p}\) estimates for nondivergence elliptic equations with discontinuous coefficients. Ricerche Mat. 40(1), 149–168 (1991)

    MathSciNet  Google Scholar 

  28. Colombo, M., Mingione, G.: Bounded minimisers of double phase variational integrals. Arch. Ration. Mech. Anal. 218(1), 219–273 (2015)

    MathSciNet  Google Scholar 

  29. Colombo, M., Mingione, G.: Regularity for double phase variational problems. Arch. Ration. Mech. Anal. 215(2), 443–496 (2015)

    MathSciNet  Google Scholar 

  30. Cinti, C., Nyström, K., Polidoro, S.: A note on Harnack inequalities and propagation sets for a class of hypoelliptic operators. Potential Anal. 33(4), 341–354 (2010)

    MathSciNet  Google Scholar 

  31. Cinti, C., Nyström, K., Polidoro, S.: A boundary estimate for non-negative solutions to Kolmogorov operators in non-divergence form. Ann. Mat. Pura Appl. (4) 191(1), 1–23 (2012)

    MathSciNet  Google Scholar 

  32. Caffarelli, L.A., Peral, I.: On \(W^{1, p}\) estimates for elliptic equations in divergence form. Commun. Pure Appl. Math. 51(1), 1–21 (1998)

    Google Scholar 

  33. Cruz-Uribe, D., Cummings, J.: Weighted norm inequalities for the maximal operator on \(L^{p(\cdot )}\) over spaces of homogeneous type. Ann. Fenn. Math. 47(1), 457–488 (2022)

    MathSciNet  Google Scholar 

  34. Cruz-Uribe, D., Fiorenza, A., Neugebauer, C.J.: Weighted norm inequalities for the maximal operator on variable Lebesgue spaces. J. Math. Anal. Appl. 394(2), 744–760 (2012)

    MathSciNet  Google Scholar 

  35. Cruz-Uribe, D., Hästö, P.: Extrapolation and interpolation in generalized Orlicz spaces. Trans. Am. Math. Soc. 370(6), 4323–4349 (2018)

    MathSciNet  Google Scholar 

  36. Cruz-Uribe, D., Martell, J.M., Pérez, C.: Sharp two-weight inequalities for singular integrals, with applications to the Hilbert transform and the Sarason conjecture. Adv. Math. 216(2), 647–676 (2007)

    MathSciNet  Google Scholar 

  37. Coifman, R.R., Weiss, G.: Analyse Harmonique Non-Commutative sur certains espaces homogènes. Lecture Notes in Mathematics, vol. 242. Springer, Berlin (1971)

    Google Scholar 

  38. Calderón, A.P., Zygmund, A.: Singular integral operators and differential equations. Am. J. Math. 79, 901–921 (1957)

    MathSciNet  Google Scholar 

  39. Di Fazio, G.: \(L^p\) estimates for divergence form elliptic equations with discontinuous coefficients. Boll. Un. Mat. Ital. A (7) 10(2), 409–420 (1996)

    MathSciNet  Google Scholar 

  40. Deng, D., Han, Y.: Harmonic Analysis on Spaces of Homogeneous Type. Lecture Notes in Mathematics, vol. 1966. Springer, Berlin (2009)

    Google Scholar 

  41. Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics, vol. 2017. Springer, Heidelberg (2011)

    Google Scholar 

  42. Diening, L.: Maximal function on generalized Lebesgue spaces \(L^{p(\cdot )}\). Math. Inequal. Appl. 7(2), 245–253 (2004)

    MathSciNet  Google Scholar 

  43. Dong, H., Kim, D.: Elliptic equations in divergence form with partially BMO coefficients. Arch. Ration. Mech. Anal. 196(1), 25–70 (2010)

    MathSciNet  Google Scholar 

  44. Dong, H., Kim, D.: On \(L_p\)-estimates for elliptic and parabolic equations with \(A_p\) weights. Trans. Am. Math. Soc. 370(7), 5081–5130 (2018)

    Google Scholar 

  45. Dong, H., Yastrzhembskiy, T.: Global \(L_p\) estimates for kinetic Kolmogorov–Fokker–Planck equations in nondivergence form. Arch. Ration. Mech. Anal. 245, 501–564 (2022)

    MathSciNet  Google Scholar 

  46. Dong, H., Yastrzhembskiy, T.: Global \(L_p\) estimates for kinetic Kolmogorov–Fokker–Planck equations in divergence form. ar**v:2206.03370

  47. Fabes, E.B., Rivière, N.M.: Singular integrals with mixed homogeneity. Studia Math. 27, 19–38 (1966)

    MathSciNet  Google Scholar 

  48. Giusti, E.: Direct Methods in the Calculus of Variations. World Scientific Publishing Co. Inc, River Edge (2003)

    Google Scholar 

  49. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics, Springer, Berlin (2001). (Reprint of the 1998 edition)

    Google Scholar 

  50. Harjulehto, P., Hästö, P.: Orlicz Spaces and Generalized Orlicz Spaces. Lecture Notes in Mathematics, vol. 2236. Springer, Cham (2019)

    Google Scholar 

  51. Hytönen, T., Kairema, A.: Systems of dyadic cubes in a doubling metric space. Colloq. Math. 126(1), 1–33 (2012)

    MathSciNet  Google Scholar 

  52. Hästö, P., Ok, J.: Calderón–Zygmund estimates in generalized Orlicz spaces. J. Differ. Equ. 267(5), 2792–2823 (2019)

    ADS  Google Scholar 

  53. Hästö, P., Ok, J.: Maximal regularity for local minimizers of non-autonomous functionals. J. Eur. Math. Soc. 24(4), 1285–1334 (2021). ((en))

    MathSciNet  Google Scholar 

  54. Hörmander, L.: Hypoelliptic second order differential equations. Acta Math. 119, 147–171 (1967)

    MathSciNet  Google Scholar 

  55. Hytönen, P.T.: The sharp weighted bound for general Calderón–Zygmund operators. Ann. Math. (2) 175(3), 1473–1506 (2012)

    MathSciNet  Google Scholar 

  56. Iwaniec, T.: Projections onto gradient fields and \(L^{p}\)-estimates for degenerated elliptic operators. Studia Math. 75(3), 293–312 (1983)

    MathSciNet  Google Scholar 

  57. Kolmogoroff, A.: Zufällige Bewegungen (zur Theorie der Brownschen Bewegung). Ann. Math. (2) 35(1), 116–117 (1934)

    MathSciNet  Google Scholar 

  58. Krylov, N.V.: Parabolic and elliptic equations with VMO coefficients. Commun. Part. Differ. Equ. 32(1–3), 453–475 (2007)

    MathSciNet  Google Scholar 

  59. Kinnunen, J., Zhou, S.: A local estimate for nonlinear equations with discontinuous coefficients. Commun. Part. Differ. Equ. 24(11–12), 2043–2068 (1999)

    MathSciNet  Google Scholar 

  60. Kinnunen, J., Zhou, S.: A boundary estimate for nonlinear equations with discontinuous coefficients. Differ. Integr. Equ. 14(4), 475–492 (2001)

    MathSciNet  Google Scholar 

  61. Lerner, A.K., Ombrosi, S.: Some remarks on the pointwise sparse domination. J. Geom. Anal. 30(1), 1011–1027 (2020)

    MathSciNet  Google Scholar 

  62. Lorist, E.: On pointwise \(\ell ^r\)-sparse domination in a space of homogeneous type. J. Geom. Anal. 31(9), 9366–9405 (2021)

    MathSciNet  Google Scholar 

  63. Lerner, A.K., Ombrosi, S., Rivera-Ríos, I.P.: On pointwise and weighted estimates for commutators of Calderón–Zygmund operators. Adv. Math. 319, 153–181 (2017)

    MathSciNet  Google Scholar 

  64. Lanconelli, E., Polidoro, S.: On a class of hypoelliptic evolution operators, vol. 52. In: Partial Differential Equations, II (Turin, 1993) (1994)

  65. Manfredini, M.: The Dirichlet problem for a class of ultraparabolic equations. Adv. Differ. Equ. 2(5), 831–866 (1997)

    MathSciNet  Google Scholar 

  66. Manfredini, M., Polidoro, S.: Interior regularity for weak solutions of ultraparabolic equations in divergence form with discontinuous coefficients. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 1(3), 651–675 (1998)

    MathSciNet  Google Scholar 

  67. Mengesha, T., Phuc, N.C.: Weighted and regularity estimates for nonlinear equations on Reifenberg flat domains. J. Differ. Equ. 250(5), 2485–2507 (2011)

    ADS  MathSciNet  Google Scholar 

  68. Mengesha, T., Phuc, N.C.: Global estimates for quasilinear elliptic equations on Reifenberg flat domains. Arch. Ration. Mech. Anal. 203(1), 189–216 (2012)

    MathSciNet  Google Scholar 

  69. Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc. 165, 207–226 (1972)

    MathSciNet  Google Scholar 

  70. Nyström, K., Polidoro, S.: Kolmogorov–Fokker–Planck equations: comparison principles near Lipschitz type boundaries. J. Math. Pures Appl. (9) 106(1), 155–202 (2016)

    MathSciNet  Google Scholar 

  71. Phuc, N.C.: Weighted estimates for nonhomogeneous quasilinear equations with discontinuous coefficients. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 10(1), 1–17 (2011)

    MathSciNet  Google Scholar 

  72. Polidoro, S.: On a class of ultraparabolic operators of Kolmogorov–Fokker–Planck type. Matematiche (Catania) 49(1), 53–105 (1994). ((1995))

    MathSciNet  Google Scholar 

  73. Polidoro, S., Ragusa, M.A.: Sobolev–Morrey spaces related to an ultraparabolic equation. Manuscripta Math. 96(3), 371–392 (1998)

    MathSciNet  Google Scholar 

  74. Silvestre, L.: Regularity estimates and open problems in kinetic equations (2022). ar**v:2204.06401 [math]

  75. Zhikov, V.V.: Averaging of functionals of the calculus of variations and elasticity theory. Izv. Akad. Nauk SSSR Ser. Mat. 50(4), 675–710, 877 (1986)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

We are thankful to Dr. Karthik Adimurthi and Dr. Agnid Banerjee for many fruitful discussions. We are grateful to the anonymous reviewer for their suggestions which have significantly improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Ghosh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This study was supported by the Tata Institute of Fundamental Research, Centre for Applicable Mathematics, Bengaluru, India.

Appendix A. Boundedness of maximal function on generalized Orlicz spaces

Appendix A. Boundedness of maximal function on generalized Orlicz spaces

We sketch below the proof of boundedness of maximal functions in the case of \(\varphi \in \Phi ({\mathbb {R}}^{N+1})\). The case of \(E\subset {\mathbb {R}}^{N+1}\) is similar. We require the unit ball property which asserts that

Lemma A.1

Let \(\varphi \in \Phi ({\mathbb {R}}^{N+1})\). Then,

$$\begin{aligned} \Vert f\Vert _{L^{\varphi (\cdot )}({\mathbb {R}}^{N+1})}<1 \implies \rho _{\varphi (\cdot )}(f)\le 1 \implies \Vert f\Vert _{L^{\varphi (\cdot )}({\mathbb {R}}^{N+1})}\le 1. \end{aligned}$$

Lemma A.2

Let \(\varphi \in \Phi ({\mathbb {R}}^{N+1})\). If \(\varphi \) satisfies (A0), (A1), (A2), (aInc\(_p\)), and (aDec\(_q\)) with \(1<p\le q<\infty \), then we have

$$\begin{aligned}&\Vert {\mathcal {M}}f\Vert _{L^{\varphi (\cdot )}({\mathbb {R}}^{N+1})}\le C \Vert f\Vert _{L^{\varphi (\cdot )}({\mathbb {R}}^{N+1})},\,f\in L^{\varphi (\cdot )}({\mathbb {R}}^{N+1}) \end{aligned}$$
(5.32)
$$\begin{aligned}&\Vert {\mathcal {M}}f\Vert _{L^{\varphi ^*(\cdot )}({\mathbb {R}}^{N+1})}\le C \Vert f\Vert _{L^{\varphi ^*(\cdot )}({\mathbb {R}}^{N+1})},\,f\in L^{\varphi ^*(\cdot )}({\mathbb {R}}^{N+1}). \end{aligned}$$
(5.33)

Proof

Step 1 (Boundedness of maximal function on ultraparabolic \(L^p\) spaces):

As described in the beginning of Sect. 4.1, \({\mathcal {M}}\) maps \(L^p({\mathbb {R}}^{N+1},d,|\cdot |)\) to itself for \(1<p\le \infty \), and \(L^1({\mathbb {R}}^{N+1},d,|\cdot |)\) to \(L^{1, \infty }({\mathbb {R}}^{N+1},d,|\cdot |)\).

Step 2 (Key estimate):

The following lemma from [50] goes through as it is for the homogeneous space \(({\mathbb {R}}^{N+1},d,|\cdot |)\).

Theorem A.3

([50, Theorem 4.3.2]) Let \(\varphi \in \Phi ({\mathbb {R}}^{N+1})\). If \(\varphi \) satisfies (A0), (A1), (A2), (aInc\(_p\)) with \(1<p<\infty \), then there exist \(\beta >0\) and \(h\in L^1({\mathbb {R}}^{N+1})\cap L^\infty ({\mathbb {R}}^{N+1})\) such that

(5.34)

for every ball \(B\subset {\mathbb {R}}^{N+1}\), \(x\in B\) and \(f\in L^{\varphi (\cdot )}({\mathbb {R}}^{N+1})\) such that \(\rho _{\varphi (\cdot )}(f)\le 1\).

Step 3: Taking supremum over all balls in inequality (5.34), we obtain

$$\begin{aligned} \varphi \left( x, \beta {\mathcal {M}}f(x)\right) ^{\frac{1}{p}}\lesssim {\mathcal {M}}(\varphi (\cdot ,f)^{\frac{1}{p}})(x) + {\mathcal {M}}(h^{\frac{1}{p}})(x), \end{aligned}$$
(5.35)

for every \(x\in {\mathbb {R}}^{N+1}\) and \(f\in L^{\varphi (\cdot )}({\mathbb {R}}^{N+1})\) such that \(\rho _{\varphi (\cdot )}(f)\le 1\). Here, we use the fact that \(h(x)^{\frac{1}{p}}\le {\mathcal {M}}(h^{\frac{1}{p}})(x)\).

Step 4: Let \(f\in L^{\varphi (\cdot )}({\mathbb {R}}^{N+1})\) such that \(\Vert f\Vert _{L^{\varphi (\cdot )}({\mathbb {R}}^{N+1})}>0\). Choose \(\varepsilon :=\frac{1}{2\Vert f\Vert _{L^{\varphi (\cdot )}({\mathbb {R}}^{N+1})}}\), then by Lemma A.1, it holds that \(\rho _{\varphi (\cdot )}(\varepsilon f)\le 1\) so that we may apply (5.35) to obtain

$$\begin{aligned} \varphi \left( x, \beta \varepsilon {\mathcal {M}}f(x)\right) ^{\frac{1}{p}}\lesssim {\mathcal {M}}(\varphi (\cdot ,\varepsilon f)^{\frac{1}{p}})(x) + {\mathcal {M}}(h^{\frac{1}{p}})(x). \end{aligned}$$
(5.36)

Raising both sides of (5.36) to power p and integrating over \({\mathbb {R}}^{N+1}\), we get

$$\begin{aligned} \int \limits _{{\mathbb {R}}^{N+1}}\varphi \left( x, \beta \varepsilon {\mathcal {M}}f(x)\right) \,\textrm{d}x&\lesssim \int \limits _{{\mathbb {R}}^{N+1}}\left( {\mathcal {M}}(\varphi (\cdot ,\varepsilon f)^{\frac{1}{p}})(x)\right) ^p\,\textrm{d}x + \int \limits _{{\mathbb {R}}^{N+1}}\left( {\mathcal {M}}(h^{\frac{1}{p}})(x)\right) ^p\,\textrm{d}x\nonumber \\&\le \int \limits _{{\mathbb {R}}^{N+1}}\varphi (\cdot ,\varepsilon f)(x)\,\textrm{d}x + \int \limits _{{\mathbb {R}}^{N+1}}h(x)\,\textrm{d}x\nonumber \\&=\rho _{\varphi (\cdot )}(f) + \Vert h\Vert _{L^1({\mathbb {R}}^{N+1})}\nonumber \\&\le 1 + \Vert h\Vert _{L^1({\mathbb {R}}^{N+1})} = C_1, \end{aligned}$$
(5.37)

where in the second inequality, we invoke boundedness of maximal function on \(L^p({\mathbb {R}}^{N+1})\) from Step 1. Inequality (5.37) is the same as \(\rho _{\varphi (\cdot )}(\beta \varepsilon {\mathcal {M}}f)\le C_1\) so that by textbfaInc\(_{1}\)(which is a consequence of convexity and \(\phi (\cdot ,0)=0\)), we have \(\rho _{\varphi (\cdot )}\left( \frac{\beta }{L C_1}\varepsilon {\mathcal {M}}f\right) \le 1\). Once again, applying Lemma A.1, we get \(\Vert \frac{\beta }{L C_1}\varepsilon {\mathcal {M}}f\Vert _{L^{\varphi (\cdot )}}\le 1\) so that \(\Vert {\mathcal {M}}f\Vert _{L^{\varphi (\cdot )}}\le \frac{C_1 L}{\varepsilon \beta }=\frac{2C_1 L}{\beta }\Vert f\Vert _{L^{\varphi (\cdot )}}\), which is the required result.

Step 5: The result for \(\varphi ^*(\cdot )\) follows by the fact that it satisfies (A0), (A1), (A2), and aInc\(_{q'}\)

\(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, A., Tewary, V. Pointwise and weighted Hessian estimates for Kolmogorov–Fokker–Planck-type operators. Annali di Matematica 203, 663–701 (2024). https://doi.org/10.1007/s10231-023-01378-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10231-023-01378-z

Keywords

Mathematics Subject Classification

Navigation