Log in

Twisting non-shearing congruences of null geodesics, almost CR structures and Einstein metrics in even dimensions

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

We investigate the geometry of a twisting non-shearing congruence of null geodesics on a conformal manifold of even dimension greater than four and Lorentzian signature. We give a necessary and sufficient condition on the Weyl tensor for the twist to induce an almost Robinson structure, that is, the screen bundle of the congruence is equipped with a bundle complex structure. In this case, the (local) leaf space of the congruence acquires a partially integrable contact almost CR structure of positive definite signature. We give further curvature conditions for the integrability of the almost Robinson structure and the almost CR structure and for the flatness of the latter. We show that under a mild natural assumption on the Weyl tensor, any metric in the conformal class that is a solution to the Einstein field equations determines an almost CR–Einstein structure on the leaf space of the congruence. These metrics depend on three parameters and include the Fefferman–Einstein metric and Taub–NUT–(A)dS metric in the integrable case. In the non-integrable case, we obtain new solutions to the Einstein field equations, which, we show, can be constructed from strictly almost Kähler–Einstein manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We shall not distinguish between the two terms, involutive and integrable, here, brushing aside any analytic issues that may arise.

  2. This is a slight abuse of terminology, since strictly, the Nijenhuis tensor is the real tensor defined by both \({\underline{{\textsf {N}}}}_{\alpha \beta \gamma }\) and \({\underline{{\textsf {N}}}}_{{\bar{\alpha }} {\bar{\beta }} {\bar{\gamma }}}\).

  3. Again, no difference will be made between the two terms in this article.

References

  1. Alekseevskiĭ, D.V.: Quaternionic Riemannian spaces with transitive reductive or solvable group of motions. Funkcional. Anal. i Priložen. 4(4), 68–69 (1970)

    MathSciNet  Google Scholar 

  2. Alekseevsky, D.V., Ganji, M., Schmalz, G.: CR-geometry and shearfree Lorentzian geometry. In: Geometric complex analysis, Springer Proc. Math. Stat., vol. 246, pp. 11–22. Springer, Singapore (2018)

  3. Alekseevsky, D.V., Ganji, M., Schmalz, G., Spiro, A.: Lorentzian manifolds with shearfree congruences and Kähler-Sasaki geometry. Differential Geom. Appl. 75, 101724 (2021). https://doi.org/10.1016/j.difgeo.2021.101724

    Article  MATH  Google Scholar 

  4. Apostolov, V., Calderbank, D.M.J., Gauduchon, P.: The geometry of weakly self-dual Kähler surfaces. Compositio Math. 135(3), 279–322 (2003)

    Article  MathSciNet  Google Scholar 

  5. Apostolov, V., Drăghici, T., Moroianu, A.: A splitting theorem for Kähler manifolds whose Ricci tensors have constant eigenvalues. Internat. J. Math. 12(7), 769–789 (2001). https://doi.org/10.1142/S0129167X01001052

    Article  MathSciNet  MATH  Google Scholar 

  6. Armstrong, J.: An ansatz for almost-Kähler, Einstein \(4\)-manifolds. J. Reine Angew. Math. 542, 53–84 (2002). https://doi.org/10.1515/crll.2002.009

    Article  MathSciNet  MATH  Google Scholar 

  7. Awad, A.M., Chamblin, A.: A bestiary of higher-dimensional Taub-NUT-AdS spacetimes. Classical Quantum Gravity 19(8), 2051–2061 (2002). https://doi.org/10.1088/0264-9381/19/8/301

    Article  MathSciNet  MATH  Google Scholar 

  8. Bailey, T.N., Eastwood, M.G., Gover, A.R.: Thomas’s structure bundle for conformal, projective and related structures. Rocky Mountain J. Math. 24(4), 1191–1217 (1994)

    Article  MathSciNet  Google Scholar 

  9. Bais, F.A., Batenburg, P.: A new class of higher-dimensional Kaluza-Klein monopole and instanton solutions. Nuclear Phys. B 253(1), 162–172 (1985). https://doi.org/10.1016/0550-3213(85)90524-3

    Article  MathSciNet  Google Scholar 

  10. Besse, A.L.: Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10. Springer-Verlag, Berlin (1987). https://doi.org/10.1007/978-3-540-74311-8

  11. Čap, A., Gover, A.R.: CR-tractors and the Fefferman space. Indiana Univ. Math. J. 57(5), 2519–2570 (2008). https://doi.org/10.1512/iumj.2008.57.3359

    Article  MathSciNet  MATH  Google Scholar 

  12. Čap, A., Gover, A.R.: A holonomy characterisation of Fefferman spaces. Ann. Global Anal. Geom. 38(4), 399–412 (2010). https://doi.org/10.1007/s10455-010-9220-6

    Article  MathSciNet  MATH  Google Scholar 

  13. Cartan, E.: Sur les espaces conformes généralisés et l’univers optique. C. R. Acad. Sci., Paris 174, 857–860 (1922)

    MATH  Google Scholar 

  14. Case, J.S., Gover, A.R.: The \(P^{\prime }\)-operator, the \(Q^{\prime }\)-curvature, and the CR tractor calculus. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 20(2), 565–618 (2020)

    MathSciNet  MATH  Google Scholar 

  15. Fefferman, C.L.: Correction to: “Monge-Ampère equations, the Bergman kernel, and geometry of pseudoconvex domains” (Ann. of Math. (2) 103 (1976), no. 2, 395–416). Ann. of Math. (2) 104(2), 393–394 (1976). https://doi.org/10.2307/1970961

  16. Fefferman, C.L.: Monge-Ampère equations, the Bergman kernel, and geometry of pseudoconvex domains. Ann. of Math. (2) 103(2), 395–416 (1976). https://doi.org/10.2307/1970945

    Article  MathSciNet  MATH  Google Scholar 

  17. Fino, A., Leistner, T., Taghavi-Chabert, A.: Optical geometries ar**v:2009.10012 preprint (2020)

  18. Fino, A., Leistner, T., Taghavi-Chabert, A.: Almost Robinson geometries ar**v:2102.05634 (2021)

  19. Goldberg, J.N., Sachs, R.K.: A theorem on Petrov types. Acta Phys. Polon. 22(suppl, suppl), 13–23 (1962)

    MathSciNet  MATH  Google Scholar 

  20. Goldberg, J.N., Sachs, R.K.: Republication of: A theorem on petrov types. General Relativity and Gravitation 41, 433–444 (2009). https://doi.org/10.1007/s10714-008-0722-5

    Article  MathSciNet  MATH  Google Scholar 

  21. Goldberg, S.I.: Integrability of almost Kaehler manifolds. Proc. Amer. Math. Soc. 21, 96–100 (1969)

    Article  MathSciNet  Google Scholar 

  22. Gover, A.R.: Almost conformally Einstein manifolds and obstructions. In: Differential geometry and its applications, pp. 247–260. Matfyzpress, Prague (2005)

  23. Gover, A.R., Graham, C.R.: CR invariant powers of the sub-Laplacian. J. Reine Angew. Math. 583, 1–27 (2005). https://doi.org/10.1515/crll.2005.2005.583.1

    Article  MathSciNet  MATH  Google Scholar 

  24. Graham, C.R.: On Sparling’s characterization of Fefferman metrics. Amer. J. Math. 109(5), 853–874 (1987). https://doi.org/10.2307/2374491

    Article  MathSciNet  MATH  Google Scholar 

  25. Gray, A., Hervella, L.M.: The sixteen classes of almost Hermitian manifolds and their linear invariants. Ann. Mat. Pura Appl. 4(123), 35–58 (1980). https://doi.org/10.1007/BF01796539

    Article  MathSciNet  MATH  Google Scholar 

  26. Hill, C.D., Lewandowski, J., Nurowski, P.: Einstein’s equations and the embedding of 3-dimensional CR manifolds. Indiana Univ. Math. J. 57(7), 3131–3176 (2008). https://doi.org/10.1512/iumj.2008.57.3473

    Article  MathSciNet  MATH  Google Scholar 

  27. Hughston, L.P., Mason, L.J.: A generalised Kerr-Robinson theorem. Classical Quantum Gravity 5(2), 275–285 (1988)

    Article  MathSciNet  Google Scholar 

  28. Kerr, R.P.: Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 11, 237–238 (1963)

    Article  MathSciNet  Google Scholar 

  29. Kopczyński, W., Trautman, A.: Simple spinors and real structures. J. Math. Phys. 33(2), 550–559 (1992)

    Article  MathSciNet  Google Scholar 

  30. Kundt, W.: The plane-fronted gravitational waves. Z. Physik 163, 77–86 (1961)

    Article  MathSciNet  Google Scholar 

  31. Lee, J.M.: The Fefferman metric and pseudo-Hermitian invariants. Trans. Amer. Math. Soc. 296(1), 411–429 (1986). https://doi.org/10.2307/2000582

    Article  MathSciNet  MATH  Google Scholar 

  32. Lee, J.M.: Pseudo-Einstein structures on CR manifolds. Amer. J. Math. 110(1), 157–178 (1988). https://doi.org/10.2307/2374543

    Article  MathSciNet  MATH  Google Scholar 

  33. Leitner, F.: On transversally symmetric pseudo-Einstein and Fefferman-Einstein spaces. Math. Z. 256(2), 443–459 (2007). https://doi.org/10.1007/s00209-007-0121-8

    Article  MathSciNet  MATH  Google Scholar 

  34. Leitner, F.: A gauged Fefferman construction for partially integrable CR geometry. J. Geom. Phys. 60(9), 1262–1278 (2010). https://doi.org/10.1016/j.geomphys.2010.03.009

    Article  MathSciNet  MATH  Google Scholar 

  35. Lewandowski, J.: On the Fefferman class of metrics associated with a three-dimensional CR space. Lett. Math. Phys. 15(2), 129–135 (1988)

    Article  MathSciNet  Google Scholar 

  36. Lewandowski, J.: Twistor equation in a curved space-time. Class. Quant. Grav. 8, L11–L18 (1991)

    Article  Google Scholar 

  37. Lewandowski, J., Nurowski, P.: Algebraically special twisting gravitational fields and CR structures. Classical Quantum Gravity 7(3), 309–328 (1990). http://stacks.iop.org/0264-9381/7/309

  38. Lewandowski, J., Nurowski, P., Tafel, J.: Einstein’s equations and realizability of CR manifolds. Classical Quantum Gravity 7(11), L241–L246 (1990). http://stacks.iop.org/0264-9381/7/L241

  39. Mason, L., Taghavi-Chabert, A.: Killing-Yano tensors and multi-Hermitian structures. Journal of Geometry and Physics 60, 907–923 (2010). https://doi.org/10.1016/j.geomphys.2010.02.008

    Article  MathSciNet  MATH  Google Scholar 

  40. Matsumoto, Y.: GJMS operators, \(Q\)-curvature, and obstruction tensor of partially integrable CR manifolds. Differential Geom. Appl. 45, 78–114 (2016). https://doi.org/10.1016/j.difgeo.2016.01.002

    Article  MathSciNet  MATH  Google Scholar 

  41. Milson, R., Coley, A., Pravda, V., Pravdová, A.: Alignment and algebraically special tensors in Lorentzian geometry. Int. J. Geom. Methods Mod. Phys. 2(1), 41–61 (2005). https://doi.org/10.1142/S0219887805000491

    Article  MathSciNet  MATH  Google Scholar 

  42. Newman, E., Tamburino, L., Unti, T.: Empty-space generalization of the Schwarzschild metric. J. Mathematical Phys. 4, 915–923 (1963)

    Article  MathSciNet  Google Scholar 

  43. Nurowski, P.: Einstein equations and cauchy-riemann geometry. Ph.D. thesis, Scuola Internazionale Superiore di Studi Avanzati (1993)

  44. Nurowski, P.: Optical geometries and related structures. J. Geom. Phys. 18(4), 335–348 (1996). https://doi.org/10.1016/0393-0440(95)00012-7

    Article  MathSciNet  MATH  Google Scholar 

  45. Nurowski, P.: Twistor bundles, Einstein equations and real structures. Class. Quant. Grav. 14, A261–A290 (1997)

    Article  MathSciNet  Google Scholar 

  46. Nurowski, P., Przanowski, M.: A four-dimensional example of a Ricci flat metric admitting almost-Kähler non-Kähler structure. Classical Quantum Gravity 16(3), L9–L13 (1999). https://doi.org/10.1088/0264-9381/16/3/002

    Article  MATH  Google Scholar 

  47. Nurowski, P., Trautman, A.: Robinson manifolds as the Lorentzian analogs of Hermite manifolds. Differential Geom. Appl. 17(2-3), 175–195 (2002). 8th International Conference on Differential Geometry and its Applications (Opava, 2001)

  48. Ortaggio, M.: Bel-Debever criteria for the classification of the Weyl tensor in higher dimensions. Classical Quantum Gravity 26(19), 195015, 8 (2009). https://doi.org/10.1088/0264-9381/26/19/195015

  49. Ortaggio, M., Pravda, V., Pravdova, A.: Ricci identities in higher dimensions. Class. Quant. Grav. 24, 1657–1664 (2007). https://doi.org/10.1088/0264-9381/24/6/018

    Article  MathSciNet  MATH  Google Scholar 

  50. Ortaggio, M., Pravda, V., Pravdova, A.: Algebraic classification of higher dimensional spacetimes based on null alignment. Class. Quant. Grav. 30, 013001 (2013). https://doi.org/10.1088/0264-9381/30/1/013001

    Article  MathSciNet  MATH  Google Scholar 

  51. Peeters, K.: Introducing Cadabra: A symbolic computer algebra system for field theory problems (2007)

  52. Peeters, K.: Cadabra2: computer algebra for field theory revisited. Journal of Open Source Software 3(32), 1118 (2018). https://doi.org/10.21105/joss.01118

    Article  Google Scholar 

  53. Penrose, R.: Twistor algebra. J. Math. Phys. 8, 345–366 (1967)

    Article  MathSciNet  Google Scholar 

  54. Penrose, R., Rindler, W.: Spinors and space-time. Vol. 2. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (1986). Spinor and twistor methods in space-time geometry

  55. Petrov, A.Z.: Classification of spaces defining gravitational fields. Kazan. Gos. Univ. Uč. Zap. 114(8), 55–69 (1954)

    MathSciNet  Google Scholar 

  56. Robinson, I.: J. Mathematical Phys. Null electromagnetic fields 2, 290–291 (1961)

    Google Scholar 

  57. Robinson, I., Trautman, A.: Some spherical gravitational waves in general relativity. Proc. Roy. Soc. London Ser. A 265, 463–473 (1961/62). https://doi.org/10.1098/rspa.1962.0036

  58. Robinson, I., Trautman, A.: Conformal geometry of flows in \(n\) dimensions. J. Math. Phys. 24(6), 1425–1429 (1983)

    Article  MathSciNet  Google Scholar 

  59. Robinson, I., Trautman, A.: Integrable optical geometry. Letters in Mathematical Physics 10, 179–182 (1985)

    Article  MathSciNet  Google Scholar 

  60. Robinson, I., Trautman, A.: Cauchy-Riemann structures in optical geometry. In: Proceedings of the fourth Marcel Grossmann meeting on general relativity, Part A, B (Rome, 1985), pp. 317–324. North-Holland, Amsterdam (1986)

  61. Robinson, I., Trautman, A.: Optical geometry. In: P.S. Ajduk Z., T. A. (eds.) New Theories in Physics, Proc. of the XI Warsaw Symp. on Elementary Particle Physics, Kazimierz 23-27 May 1988, pp. 454–497. World Scientific (1989)

  62. Schmalz, G., Ganji, M.: A criterion for local embeddability of three-dimensional CR structures. Ann. Mat. Pura Appl. (4) 198(2), 491–503 (2019). https://doi.org/10.1007/s10231-018-0785-1

    Article  MathSciNet  MATH  Google Scholar 

  63. Sekigawa, K.: On some compact Einstein almost Kähler manifolds. J. Math. Soc. Japan 39(4), 677–684 (1987). https://doi.org/10.2969/jmsj/03940677

    Article  MathSciNet  MATH  Google Scholar 

  64. Tafel, J.: On the Robinson theorem and shearfree geodesic null congruences. Lett. Math. Phys. 10(1), 33–39 (1985). https://doi.org/10.1007/BF00704584

    Article  MathSciNet  MATH  Google Scholar 

  65. Taghavi-Chabert, A.: A characterisation of Fefferman spaces for almost CR geometry. In preparation

  66. Taghavi-Chabert, A.: The complex Goldberg-Sachs theorem in higher dimensions. J. Geom. Phys. 62(5), 981–1012 (2012). https://doi.org/10.1016/j.geomphys.2012.01.012

    Article  MathSciNet  MATH  Google Scholar 

  67. Taghavi-Chabert, A.: The curvature of almost Robinson manifolds. ar**v:1404.5810 preprint (2014)

  68. Taghavi-Chabert, A.: Pure spinors, intrinsic torsion and curvature in even dimensions. Differential Geometry and its Applications 46, 164–203 (2016). https://doi.org/10.1016/j.difgeo.2016.02.006. http://www.sciencedirect.com/science/article/pii/S0926224516300171

  69. Tanaka, N.: A differential geometric study on strongly pseudo-convex manifolds. Kinokuniya Book-Store Co., Ltd., Tokyo (1975). Lectures in Mathematics, Department of Mathematics, Kyoto University, No. 9

  70. Taub, A.H.: Empty space-times admitting a three parameter group of motions. Ann. of Math. 2(53), 472–490 (1951). https://doi.org/10.2307/1969567

    Article  MathSciNet  MATH  Google Scholar 

  71. Trautman, A.: Deformations of the Hodge map and optical geometry. J. Geom. Phys. 1(2), 85–95 (1984). https://doi.org/10.1016/0393-0440(84)90005-6

    Article  MathSciNet  MATH  Google Scholar 

  72. Trautman, A.: Optical structures in relativistic theories. Numéro Hors Série, pp. 401–420 (1985). The mathematical heritage of Élie Cartan (Lyon, 1984)

  73. Trautman, A.: Gauge and optical aspects of gravitation. Classical Quantum Gravity 16(12A), A157–A175 (1999). https://doi.org/10.1088/0264-9381/16/12A/308

    Article  MathSciNet  MATH  Google Scholar 

  74. Trautman, A.: Robinson manifolds and Cauchy-Riemann spaces. Classical Quantum Gravity 19(2), R1–R10 (2002)

    Article  MathSciNet  Google Scholar 

  75. Trautman, A.: Robinson manifolds and the shear-free condition. In: Proceedings of the Conference on General Relativity, Cosmology and Relativistic Astrophysics (Journées Relativistes) (Dublin, 2001), vol. 17, pp. 2735–2737 (2002)

  76. Webster, S.M.: Pseudo-Hermitian structures on a real hypersurface. J. Differential Geometry 13(1), 25–41 (1978). http://projecteuclid.org/euclid.jdg/1214434345

Download references

Acknowledgements

The author would like to thank Rod Gover for useful conversations. Parts of the results in this article were presented at the workshop “Twistors and Loops Meeting in Marseille” that took place in September 2019, at CIRM, Marseille, France. Both the present article and the recent paper [3], which overlap regarding some aspects and content of this topic, were written independently and simultaneously.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arman Taghavi-Chabert.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author declares that this work was partially supported by the Grant 346300 for IMPAN from the Simons Foundation and the matching 2015-2019 Polish MNiSW fund. He was also supported by a long-term faculty development grant from the American University of Beirut for his visit to IMPAN, Warsaw, in the summer 2018, where this research was partly conducted.

Computation of the curvature

Computation of the curvature

In this section, we compute the curvature tensors of the metric g given in Sect. 5. The use of the open-source software cadabra [51, 52] was particularly helpful for that purpose. Not all components of the curvature tensors are given, but all may be obtained by means of complex conjugation and index manipulation. Parts of the first Bianchi identities are also given to bring out other forms of the components—the remaining, ‘purely CR’, parts being given by equations (4.3). We omit pullback maps for clarity.

1.1 Riemann tensor

$$\begin{aligned} R_{\gamma }{}^{0 0}\,_{\alpha }&= 0 \, , \end{aligned}$$
(A.1)
$$\begin{aligned} R_{{\bar{\gamma }}}{}^{0 0}\,_{\alpha }&= - {\underline{h}}_{\alpha {\bar{\gamma }}} \, , \end{aligned}$$
(A.2)
$$\begin{aligned} R_{0}{}^{0 0}\,_{\alpha }&= {\dot{E}}_{\alpha } - \mathrm {i}E_{\alpha } \, , \end{aligned}$$
(A.3)
$$\begin{aligned} R_{\beta \delta }{}^{0}\,_{\alpha }&= - 2 \mathrm {i}{\underline{{\textsf {N}}}}_{\beta \delta \alpha } \, , \end{aligned}$$
(A.4)
$$\begin{aligned} R_{\beta {\bar{\gamma }}}{}^{0}\,_{\alpha }&= - 2 \mathrm {i}E_{\alpha } {\underline{h}}_{\beta {\bar{\gamma }}} - \mathrm {i}E_{\beta } {\underline{h}}_{\alpha {\bar{\gamma }}} \, , \end{aligned}$$
(A.5)
$$\begin{aligned} R_{\gamma 0}{}^{0}\,_{\alpha }&= - {\underline{\nabla }}_{\gamma } E_{\alpha } + \lambda _{\gamma } {\dot{E}}_{\alpha } + E_{\alpha } E_{\gamma } +E^{\beta } {\underline{{\textsf {N}}}}_{\beta \alpha \gamma } - \frac{1}{2} \mathrm {i}{\underline{A}}_{\alpha \gamma } - \mathrm {i}B_{\gamma \alpha } \, , \end{aligned}$$
(A.6)
$$\begin{aligned} R{}_{{\bar{\beta }} 0}{}^{0}{}_{\alpha }&= - {\underline{\nabla }}_{{\bar{\beta }}} E_{\alpha } + \lambda _{{\bar{\beta }}} {\dot{E}}_{\alpha } + E_{\alpha } E_{{\bar{\beta }}} + \mathrm {i}E_{0} {\underline{h}}_{\alpha {\bar{\beta }}} - \mathrm {i}B_{\alpha {\bar{\beta }}} \, , \end{aligned}$$
(A.7)
$$\begin{aligned} R_{0}{}^{0 0}\,_{0}&= {\dot{E}}_{0} -2 E_{\alpha } E^{\alpha } \, , \end{aligned}$$
(A.8)
$$\begin{aligned} R_{\gamma \delta \alpha \beta }&= 2 {\underline{\nabla }}_{[\gamma |} {\underline{{\textsf {N}}}}_{\alpha \beta |\delta ]} \, , \end{aligned}$$
(A.9)
$$\begin{aligned} R_{\gamma {\bar{\delta }} \alpha \beta }&= 2 \mathrm {i}B_{\alpha \beta } {\underline{h}}_{\gamma {\bar{\delta }}} - 2 \mathrm {i}B_{\gamma [\alpha } {\underline{h}}_{\beta ] {\bar{\delta }}} - {\underline{\nabla }}_{{\bar{\delta }}} {\underline{{\textsf {N}}}}_{\alpha \beta \gamma } + \mathrm {i}{\underline{A}}_{\gamma [\alpha } {\underline{h}}_{\beta ] {\bar{\delta }}} \, , \end{aligned}$$
(A.10)
$$\begin{aligned} R_{\gamma {\bar{\delta }} {\bar{\beta }} \alpha }&= {\underline{R}}_{\gamma {\bar{\delta }} \alpha {\bar{\beta }}} - 2 \mathrm {i}B_{\alpha {\bar{\beta }}} {\underline{h}}_{\gamma {\bar{\delta }}} - 2 \mathrm {i}B_{\gamma {\bar{\delta }}} {\underline{h}}_{\alpha {\bar{\beta }}} - \mathrm {i}B_{\gamma {\bar{\beta }} } {\underline{h}}_{\alpha {\bar{\delta }}} - \mathrm {i}B_{\alpha {\bar{\delta }}} {\underline{h}}_{\gamma {\bar{\beta }}} + {\underline{{\textsf {N}}}}_{\epsilon \alpha \gamma } {\underline{{\textsf {N}}}}{}^{\epsilon }{}_{{\bar{\beta }} {\bar{\delta }}} \, , \end{aligned}$$
(A.11)
$$\begin{aligned} R_{0}{}^{0}{}_{\alpha 0}&= \frac{1}{2} {\underline{\nabla }}_{0} E_{\alpha } - \frac{1}{2}\lambda _{0} {\dot{E}}_{\alpha }+ E^{\beta } B_{\alpha \beta } +E_{\beta } B_{\alpha }\,^{\beta } + \mathrm {i}C_{\alpha } - {\dot{C}}_{\alpha } \, , \end{aligned}$$
(A.12)
$$\begin{aligned} R_{\gamma 0 \alpha \beta }&= {\underline{\nabla }}_{\gamma } B_{\alpha \beta } - \lambda _{\gamma } {\dot{B}}_{\alpha \beta } + 2 B_{[\alpha }\,^{\delta } {\underline{{\textsf {N}}}}_{\beta ] \delta \gamma } +E_{[\alpha } {\underline{A}}_{\beta ] \gamma } + 2 E_{[\alpha } B_{\beta ] \gamma } - \frac{1}{2} {\underline{\nabla }}_{0} {\underline{{\textsf {N}}}}_{\alpha \beta \gamma } \, , \end{aligned}$$
(A.13)
$$\begin{aligned} R_{\beta {\bar{\gamma }} \alpha 0}&= - {\underline{\nabla }}_{{\bar{\gamma }}} B_{\alpha \beta } + \lambda _{{\bar{\gamma }}} {\dot{B}}_{\alpha \beta } + {\underline{\nabla }}_{\beta } B_{\alpha {\bar{\gamma }}} - \lambda _{\beta } {\dot{B}}_{\alpha {\bar{\gamma }}} -2 E_{\alpha } B_{\beta {\bar{\gamma }}} +E_{\beta } B_{\alpha {\bar{\gamma }}} -E_{{\bar{\gamma }}}B_{\alpha \beta } \nonumber \\&\qquad + 2 \mathrm {i}C_{\alpha } {\underline{h}}_{\beta {\bar{\gamma }}} - \frac{1}{2}E_{{\bar{\gamma }}} {\underline{A}}_{\alpha \beta } + B_{{\bar{\gamma }}}{}^{\delta } {\underline{{\textsf {N}}}}_{\delta \alpha \beta } - \frac{1}{2} {\underline{\nabla }}_{{\bar{\gamma }}} {\underline{A}}_{\alpha \beta } - \frac{1}{2}{\underline{A}}_{{\bar{\gamma }}}{}^{\delta } {\underline{{\textsf {N}}}}_{\delta \alpha \beta } \, , \end{aligned}$$
(A.14)
$$\begin{aligned} R_{\beta 0 \alpha 0}&= - \frac{1}{2} {\underline{\nabla }}_{0} B_{\alpha \beta } + \frac{1}{2} \lambda _{0} {\dot{B}}_{\alpha \beta } + {\underline{\nabla }}_{\beta } C_{\alpha } - \lambda _{\beta } {\dot{C}}_{\alpha } -B_{\alpha }\,^{\gamma } {\underline{A}}_{\beta \gamma } -E_{\alpha } C_{\beta } +B_{\alpha \gamma } B_{\beta }\,^{\gamma } \nonumber \\&\qquad - C^{\gamma } {\underline{{\textsf {N}}}}_{\gamma \alpha \beta } + B_{\beta \gamma } B_{\alpha }\,^{\gamma } +E_{\beta } C_{\alpha } - \frac{1}{2}E_{0} {\underline{A}}_{\alpha \beta } -E_{0} B_{\alpha \beta } - \frac{1}{4} {\underline{\nabla }}_{0} {\underline{A}}_{\alpha \beta } \, , \end{aligned}$$
(A.15)
$$\begin{aligned} R_{{\bar{\beta }} 0 \alpha 0}&= - \frac{1}{2} {\underline{\nabla }}_{0} B_{\alpha {\bar{\beta }}} + \frac{1}{2} \lambda _{0} {\dot{B}}_{\alpha {\bar{\beta }}} + {\underline{\nabla }}_{{\bar{\beta }}} C_{\alpha } - \lambda _{{\bar{\beta }}} {\dot{C}}_{\alpha } -B_{\alpha \gamma } {\underline{A}}_{{\bar{\beta }}}{}^{\gamma } \nonumber \\&\qquad -E_{\alpha } C^{\beta } + B_{\alpha \gamma } B_{{\bar{\beta }} }{}^{\gamma } -B_{\alpha }\,^{\gamma } B_{\gamma {\bar{\beta }}} +E_{{\bar{\beta }}} C_{\alpha } -E_{0} B_{\alpha {\bar{\beta }}} - \frac{1}{4}{\underline{A}}_{\alpha \gamma } {\underline{A}}_{{\bar{\beta }} }{}^{\gamma } \, . \end{aligned}$$
(A.16)

1.2 The Ricci tensor

$$\begin{aligned} {\mathrm {Ric}}^{0 0}&= 2m \, , \end{aligned}$$
(A.17)
$$\begin{aligned} {\mathrm {Ric}}_{\alpha }{}^{0}&= {\dot{E}}\,_{\alpha } -4 \mathrm {i}E_{\alpha }\, , \end{aligned}$$
(A.18)
$$\begin{aligned} {\mathrm {Ric}}_{\alpha \beta }&=2 {\underline{\nabla }}_{(\alpha }{E_{\beta )}} - 2 \lambda _{(\alpha } {\dot{E}}\,_{\beta )} - 2 E_{\alpha } E_{\beta } + \mathrm {i}m {\underline{A}}_{\alpha \beta } + 2 {\underline{\nabla }}^{\gamma }{{\underline{{\textsf {N}}}}_{\gamma (\alpha \beta )}} - 2 {\underline{{\textsf {N}}}}_{\gamma (\alpha \beta )}E^{\gamma } \, , \end{aligned}$$
(A.19)
$$\begin{aligned} {\mathrm {Ric}}_{\alpha {\bar{\beta }}}&= {\underline{\nabla }}_{\alpha }{E_{\bar{\beta }}} + {\underline{\nabla }}_{\bar{\beta }}{E_{\alpha }} - \lambda _{\alpha } {\dot{E}}_{\bar{\beta }} - \lambda _{\bar{\beta }}{\dot{E}}_{\alpha } -2E_{\alpha } E_{\bar{\beta }} \nonumber \\&\qquad - 4 \mathrm {i}B_{\alpha {\bar{\beta }}} + {\underline{{\mathrm {Ric}}}}_{\alpha {\bar{\beta }}} - {\underline{{\textsf {N}}}}_{\alpha \delta \gamma } {\underline{{\textsf {N}}}}_{\bar{\beta }}\,^{\delta \gamma } \, , \end{aligned}$$
(A.20)
$$\begin{aligned} {\mathrm {Ric}}_{0}{}^{0}&= {\underline{\nabla }}_{\alpha }{E^{\alpha }} + {\underline{\nabla }}^{\alpha }{E_{\alpha }} - \lambda _{\alpha } {\dot{E}}^{\alpha } - \lambda ^{\alpha } {\dot{E}}_{\alpha } - 4E_{\alpha } E^{\alpha }+2 \mathrm {i}B_{\alpha }\,^{\alpha }+{\dot{E}}\,_{0} \, , \end{aligned}$$
(A.21)
$$\begin{aligned} {\mathrm {Ric}}_{0 \beta }&= {\underline{\nabla }}_{\beta }{E_{0}} - \frac{1}{2}{\underline{\nabla }}_{0}{E_{\beta }} - \lambda _{\beta } {\dot{E}}_{0} + \frac{1}{2}\lambda _{0} {\dot{E}}\,_{\beta } -\frac{1}{2}E^{\alpha } {\underline{A}}_{\beta \alpha } - 2 E^{\alpha } B_{\alpha \beta } + 2 E_{\alpha } B_{\beta }\,^{\alpha } \nonumber \\&\qquad -\mathrm {i}C_{\beta } + {\underline{\nabla }}^{\alpha }{B_{\alpha \beta }} - \lambda ^{\alpha } {\dot{B}}\,_{\alpha \beta } - {\underline{\nabla }}_{\alpha }{B_{\beta }\,^{\alpha }} + \lambda _{\alpha }{\dot{B}}_{\beta }\,^{\alpha } \nonumber \\&\qquad +\frac{1}{2} B^{\alpha \gamma } {\underline{{\textsf {N}}}}_{\alpha \gamma \beta } + \frac{1}{2} {\underline{\nabla }}^{\alpha }{{\underline{A}}_{\beta \alpha }} +\frac{1}{2}{\underline{A}}^{\alpha \gamma } {\underline{{\textsf {N}}}}_{\beta \alpha \gamma } \, , \end{aligned}$$
(A.22)
$$\begin{aligned} {\mathrm {Ric}}_{0 0}&= {\underline{\nabla }}_{\alpha } {C^{\alpha }} + {\underline{\nabla }}^{\alpha }{C_{\alpha }} - \lambda _{\alpha } {\dot{C}}^{\alpha } - \lambda ^{\alpha }{\dot{C}}_{\alpha } - \frac{1}{2} {\underline{A}}_{\alpha \beta } {\underline{A}}^{\alpha \beta }+2B_{\alpha \beta } B^{\alpha \beta }-2B_{\alpha }\,^{\beta } B_{\beta }\,^{\alpha }\, . \end{aligned}$$
(A.23)

1.3 The Ricci scalar

$$\begin{aligned} {\mathrm {Sc}}= & {} 4 {\underline{\nabla }}_{\alpha }{E^{\alpha }} +4 {\underline{\nabla }}^{\alpha }{E_{\alpha }} - 4 \lambda _{\alpha } {\dot{E}}^{\alpha } -4\lambda ^{\alpha } {\dot{E}}\,_{\alpha }-12E_{\alpha } E^{\alpha } \nonumber \\&+2{\dot{E}}\,_{0} -4 \mathrm {i}B_{\alpha }\,^{\alpha } +2 {\underline{{\mathrm {Sc}}}} -2 {\underline{{\textsf {N}}}}_{\alpha \beta \gamma } {\underline{{\textsf {N}}}}^{\alpha \beta \gamma } \, . \end{aligned}$$
(A.24)

1.4 The first Bianchi identities

$$\begin{aligned} 0&= {\dot{B}}_{\alpha \beta } + 2 {\underline{\nabla }}_{[\alpha } {E_{\beta ]}} - 2 \lambda _{[\alpha } {\dot{E}}_{\beta ]} - {\underline{{\textsf {N}}}}_{\alpha \beta \gamma } E^{\gamma } \, , \end{aligned}$$
(A.25)
$$\begin{aligned} 0&= {\dot{B}}_{\alpha {\bar{\beta }}} + {\underline{\nabla }}_{\alpha }{E_{{\bar{\beta }}}} - {\underline{\nabla }}_{{\bar{\beta }}}{E_{\alpha }} - \lambda _{\alpha } {\dot{E}}_{{\bar{\beta }}} + \lambda _{{\bar{\beta }}} {\dot{E}}_{\alpha } + \mathrm {i}E_{0} {\underline{h}}_{\alpha {\bar{\beta }}} \, , \end{aligned}$$
(A.26)
$$\begin{aligned} 0&= {\dot{C}}_{\alpha } + {\underline{\nabla }}_{\alpha }{E_{0}} - {\underline{\nabla }}_{0}{E_{\alpha }} - \lambda _{\alpha } {\dot{E}}_{0} + \lambda _{0}{\dot{E}}_{\alpha } - {\underline{A}}_{\beta \alpha } E^{\beta } \, , \end{aligned}$$
(A.27)
$$\begin{aligned} 0&= {\underline{\nabla }}_{[\alpha }{B_{\beta \gamma ]}} - \lambda _{[\alpha } {\dot{B}}_{\beta \gamma ]} + B_{[\alpha }\,^{\delta } {\underline{{\textsf {N}}}}_{\beta \gamma ] \delta } +2E_{[\alpha } B_{\beta \gamma ]} \, , \end{aligned}$$
(A.28)
$$\begin{aligned} 0&= 2 {\underline{\nabla }}_{[\alpha }{B_{\beta ] {\bar{\gamma }}}} +{\underline{\nabla }}_{{\bar{\gamma }}}{B_{\alpha \beta }} - 2 \lambda _{[\alpha }{\dot{B}}_{\beta ] {\bar{\gamma }}} - \lambda _{{\bar{\gamma }}} {\dot{B}}_{\alpha \beta } \nonumber \\&\qquad \qquad + 4E_{[\alpha } B_{\beta ] {\bar{\gamma }}} + 2E_{{\bar{\gamma }}} B_{\alpha \beta } -2 \mathrm {i}C_{[\alpha } {\underline{h}}_{\beta ] {\bar{\gamma }}} + {\underline{{\textsf {N}}}}_{\alpha \beta \delta } B_{{\bar{\gamma }}}{}^{\delta } \, , \end{aligned}$$
(A.29)
$$\begin{aligned} 0&= {\underline{\nabla }}_{[\alpha }{C_{\beta ]}} - \lambda _{[\alpha } {\dot{C}}_{\beta ]} + \frac{1}{2} {\underline{\nabla }}_{0}{B_{\alpha \beta }} - \frac{1}{2} \lambda _{0} {\dot{B}}_{\alpha \beta } \nonumber \\&\qquad + 2E_{[\alpha } C_{\beta ]} +E_{0} B_{\alpha \beta } + B_{[\alpha }\,^{\gamma } {\underline{A}}_{\beta ] \gamma } -\frac{1}{2} {\underline{{\textsf {N}}}}_{\alpha \beta \gamma } C^{\gamma } \, , \end{aligned}$$
(A.30)
$$\begin{aligned} 0&= {\underline{\nabla }}_{\alpha } {C_{{\bar{\beta }}}} - {\underline{\nabla }}_{{\bar{\beta }}}{C_{\alpha }} - \lambda _{\alpha } {\dot{C}}_{{\bar{\beta }}} + \lambda _{{\bar{\beta }}}{\dot{C}}_{\alpha } + {\underline{\nabla }}_{0}{B_{\alpha {\bar{\beta }}}} - \lambda _{0}{\dot{B}}_{\alpha {\bar{\beta }}} \nonumber \\&\qquad +2E_{\alpha } C_{{\bar{\beta }}} -2E_{{\bar{\beta }}} C_{\alpha } +2E_{0} B_{\alpha {\bar{\beta }}} - B_{{\bar{\beta }}}{}^{\gamma } {\underline{A}}_{\gamma \alpha } - {\underline{A}}_{{\bar{\beta }}}{}^{\gamma } B_{ \gamma \alpha } \, . \end{aligned}$$
(A.31)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taghavi-Chabert, A. Twisting non-shearing congruences of null geodesics, almost CR structures and Einstein metrics in even dimensions. Annali di Matematica 201, 655–693 (2022). https://doi.org/10.1007/s10231-021-01133-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10231-021-01133-2

Keywords

Mathematics Subject Classification

Navigation