Log in

Zero-modified count time series modeling with an application to influenza cases

  • Original Paper
  • Published:
AStA Advances in Statistical Analysis Aims and scope Submit manuscript

Abstract

The past few decades have seen considerable interest in modeling time series of counts, with applications in many domains. Classical and Bayesian modeling have primarily focused on conditional Poisson sampling distributions at each time. There is very little research on modeling time series involving Zero-Modified (i.e., Zero Deflated or Inflated) distributions. This paper aims to fill this gap and develop models for count time series involving Zero-Modified distributions, which belong to the Power Series family and are suitable for time series exhibiting both zero-inflation and zero-deflation. A full Bayesian approach via the Hamiltonian Monte Carlo (HMC) technique enables accurate modeling and inference. The paper illustrates our approach using time series on the number of deaths from the influenza virus in the city of São Paulo, Brazil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

the data are open to the public and are available at the links cited in the paper.

References

  • Andrade, B., Andrade, M., Ehlers, R.: Bayesian GARMA models for count data. Commun. Stat. Case Stud. Data Anal. Appl. 4(1), 192–205 (2015)

    Google Scholar 

  • Balakrishna, N., Anvar, M., Abraham, B.: Zero-modified count time series with Markovian intensities. (2021). ar**v preprint ar**v:2107.01813

  • Benjamin, M.A., Rigby, R.A., Stasinopoulos, D.M.: Generalized autoregressive moving average models. J. Am. Stat. Assoc. 98, 214–223 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Box, G.E.P., Jenkins, G.M., Reinsel, G.C., et al.: Time Series Analysis: Forecasting and Control, 5th edn. Wiley, New Yark (2016)

    MATH  Google Scholar 

  • Campbell, M.: Time series regression for counts: an investigation into the relationship between sudden infant death syndrome and environmental temperature. J. Royal Stat. Soc. Ser A (Stat. Soc.) 157(2), 191–208 (1994)

    Article  Google Scholar 

  • Carlin, B.P., Louis, T.A.: Bayes and Empirical Bayes methods for Data Analysis. Chapman and Hall/CRC, Boca Raton - FL (2008)

    Book  MATH  Google Scholar 

  • CDC: Center for disease control and prevention. https://www.cdc.gov/flu/about/index.html, accessed September 2020 (2020a)

  • CDC-H1N1: Center for disease control and prevention. https://www.cdc.gov/h1n1flu/, accessed September 2020 (2020)

  • Chen, C.W.S., Lee, S.: Generalized poisson autoregressive models for time series of counts. Computat. Stat. Data Anal.sis 99, 51–67 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, M., Shao, Q.: Monte Carlo estimation of Bayesian credible and HPD intervals. J. Computat. Graph. Stat. 8, 69–92 (1998)

    MathSciNet  Google Scholar 

  • Chib, S., Greenberg, E.: Understanding the metropolis-hastings algorithm. Am. Statist. 49(4), 327–335 (1995)

    Google Scholar 

  • Chretien, J.P., George, D., Shaman, J., et al.: Influenza forecasting in human Populations: A sco** review. PLoS ONE 9(e94), 130 (2014)

    Google Scholar 

  • Conceição, K.S., Andrade, M.G., Louzada, F.: Zero-modified Poisson model: bayesian approach, influence diagnostics, and an application to a Brazilian leptospirosis notification data. Biomet. J. 55, 661–678 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Conceição, K.S., Louzada, F., Andrade, M.G., et al.: Zero-modified Poisson power series distribution and its hurdle distribution version. J. Statist. Computat. Simulat. 87, 1842–1862 (2017)

    Article  MATH  Google Scholar 

  • Cordeiro, G.M., Andrade, M.G., de Castro, M.: Power series generalized nonlinear models. Computat. Statist. Data Anal. 53, 1155–1166 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Cox, D.: Statistical analysis of time series: some recent developments. Scand. J. Statist. 8, 93–115 (1981). (MR0623,586)

    MathSciNet  MATH  Google Scholar 

  • Davis, R.A., Dunsmuir, W., Wang, Y.: On autocorrelation in a Poisson regression model. Biometrika 87, 491–505 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Davis, R.A., Dunsmuir, W.T.M., Streett, S.B.: Observation-driven models for Poisson counts. Methodol. Comput. Appl. Probab. 90, 777–790 (2003)

    MathSciNet  MATH  Google Scholar 

  • Davis, R.A., Dunsmuir, W.T.M., Streett, S.: Maximum likelihood estimation for an observation driven model for Poisson counts. Methodol. Comput. Appl. Probab. 7, 149–159 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Davis, R.A., Holan, S.H., Lund, R., et al.: Handbook of Discrete-Valued Time Series. Chapman & Hall/CRC, New York (2016)

    Book  MATH  Google Scholar 

  • Dietz, E., Böhning, D.: On estimation of the poisson parameter in zero-modified poisson models. Computat. Statist. Data Anal. 34, 441–459 (2000)

    Article  MATH  Google Scholar 

  • Duane, S., Kennedy, A., Pendleton, B.J., et al.: Hybrid Monte Carlo. Phys. Lett. B 195(2), 216–222 (1987)

    Article  MathSciNet  Google Scholar 

  • FGV-EMAp: school of applied mathematics/getúlio vargas foundation. https://emap.fgv.br/, accessed September 2020 (2020)

  • Fiocruz-PROCC: scientific computing program/fiocruz fundation. https://portal.fiocruz.br/en/procc-programa-de-computacao-cientifica-ingles, accessed September 2020 (2020)

  • Fokianos, K., Kedem, B.: Partial likelihood inference for time series following generalized linear model. J. Time Ser. Anal. 25(2), 173–197 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Freelanda, R.K., McCabeb, B.P.M.: Forecasting discrete valued low count time series. Int. J. Forecast. 20, 427–434 (2004)

    Article  Google Scholar 

  • Gelfand, A., Dey, K.: Bayesian model choice: asymptotics and exact calculations. J. Royal Statist. Soc. 56(3), 501–514 (1994)

    MathSciNet  MATH  Google Scholar 

  • Gelfand, A., Smith, A.: Sampling-based approaches to calculating marginal densities. J. Am. Statist. Assoc. 85, 398–409 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Gelman, A., Hwang, J., Vehtari, A.: Understanding predictive information criteria for Bayesian models. Statist. Comput. 24, 997–1016 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Geweke, J.: Evaluating the accuracy of sampling-based approaches to calculating posterior moments. J. Royal Statist. Soc. 56(3), 501–514 (1994)

    MathSciNet  Google Scholar 

  • Grunwald, G.K., Hyndman, R.J., Tedesco, L., et al.: Non-Gaussian conditional linear AR(1) models. Austral. New Zealand J. Statist. 42, 479–495 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • GT-Influenza: Gt-influenza/info gripe/Oswaldo Cruz foundation. http://info.gripe.fiocruz.br/, accessed September 2020 (2020)

  • Guikema, S.D., Coffelt, J.P.: A flexible count data regression model for risk analysis. Risk Anal. 28(1), 213–223 (2008)

    Article  Google Scholar 

  • Harvey, A.: Forecasting, Structural Time Series Models, and the Kalman Filter. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  • Huayanay, A., Bazá n, J., Cancho, V., et al.: Performance of asymmetric links and correction methods for imbalanced data in binary regression. J. Statist. Computat. Simulat. 89(9), 1694–1714 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Jung, R.C., Tremayne, A.R.: Coherent forecasting in integer time series models. Int. J. Forecast. 22, 223–238 (2006)

    Article  Google Scholar 

  • Kim, S., Kim, H.: A new metric of absolute percentage error for intermittent demand forecasts. Int. J. Forecast. 32, 669–679 (2016)

    Article  Google Scholar 

  • King, G.: Event count models for international relations: generalizations and applications. Int. Stud. Quart. 33, 123–147 (1989)

    Article  Google Scholar 

  • Li, W.: Time series models based on generalized linear models: some further results. Biometrics 50, 506–511 (1994)

    Article  MATH  Google Scholar 

  • MS-SVS: the health surveillance secretariat/ministry of health. https://www.saude.gov.br/component/tags/tag/svs, accessed September 2020 (2020)

  • Mullahy, J.: Specification and testing of some modified count data models. J. Econom. 33, 341–365 (1986)

    Article  MathSciNet  Google Scholar 

  • Neal, R.M.: Bayesian Learning for Neural Networks. Ph.D. thesis, Dept. of Computer Science, University of Toronto, Toronto – Canada (1994)

  • Neal, R.M.: Handbook of Markov Chain Monte Carlo, Chapman & Hall, New York, chap MCMC using Hamiltonian dynamics, pp. 113–162 (2011)

  • Nsoesie, E.O., Brownstein, J., Ramakrishnan, N., et al.: A systematic review of studies on forecasting the dynamics of influenza outbreaks. Influenza Respir Viru 8, 309–316 (2014)

    Article  Google Scholar 

  • R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, (2021). http://www.R-project.org

  • Samuel, T., Wanzhu, T.: Learning Hamiltonian Monte Carlo in R. Am Statist 75(4), 403–413 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Shephard, N.: Generalized Linear Autoregression. Technical report, Nuffield College, Oxford University, Tech. rep. (1995)

    Google Scholar 

  • Silla, A., Kallberg, V.: The development of railway safety in Finland. Accid. Anal. Prevent. 45, 737–744 (2012)

    Article  Google Scholar 

  • SINAN: Severe acute respiratory syndrome/notifiable diseases information system. (2020). http://sinan.saude.gov.br/sinan/, accessed September 2020

  • Tierney, L.: Markov chains for exploring posterior distributions. Ann. Statist. 22, 1701–1728 (1994)

    MathSciNet  MATH  Google Scholar 

  • Watanabe, S.: A widely applicable Bayesian information criterion. J. Mach. Learn. Res. 14(27), 867–897 (2013)

    MathSciNet  MATH  Google Scholar 

  • West, M., Harrison, P.: Bayesian Forecasting and Dynamic Models, 2nd edn. Springer, New York (1987)

    MATH  Google Scholar 

  • Yi, Z.: Count data time series models and their applications. Doctoral dissertations 3024, Department: Mathematics and Statistics, Missouri University of Science and Technology, Rolla – Missouri, (2021). https://scholarsmine.mst.edu/doctoral_dissertations/3024

  • Zeger, S.L., Qaqish, B.: Markov regression models for time series: a quasi-likelihood approach. Biometrics 44, 1019–1031 (1988a)

    Article  MathSciNet  MATH  Google Scholar 

  • Zeger, S.L., Qaqish, B.: Markov regression models for time series: of counts. Biometrika 75, 621–629 (1988b)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Marinho G. Andrade is supported by the Brazilian organization FAPESP (2019/21766-8); Katiane S. Conceição is supported by the Brazilian organization FAPESP (2019/22412-5).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Marinho G. Andrade.

Ethics declarations

Conflict of interest

There isn’t a conflict of interest or competing interests.

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Code availability

contact the corresponding author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrade, M.G., Conceição, K.S. & Ravishanker, N. Zero-modified count time series modeling with an application to influenza cases. AStA Adv Stat Anal (2023). https://doi.org/10.1007/s10182-023-00488-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10182-023-00488-6

Keywords

Navigation