Log in

Separation and relaxation for cones of quadratic forms

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

Let \({P \subseteq \mathfrak{R}_{n}}\) be a pointed, polyhedral cone. In this paper, we study the cone \({\mathcal{C} = {\rm cone}\{xx^T : x \in P\}}\) of quadratic forms. Understanding the structure of \({\mathcal{C}}\) is important for globally solving NP-hard quadratic programs over P. We establish key characteristics of \({\mathcal{C}}\) and construct a separation algorithm for \({\mathcal{C}}\) provided one can optimize with respect to a related cone over the boundary of P. This algorithm leads to a nonlinear representation of \({\mathcal{C}}\) and a class of tractable relaxations for \({\mathcal{C}}\) , each of which improves a standard polyhedral-semidefinite relaxation of \({\mathcal{C}}\) . The relaxation technique can further be applied recursively to obtain a hierarchy of relaxations, and for constant recursive depth, the hierarchy is tractable. We apply this theory to two important cases: P is the nonnegative orthant, in which case \({\mathcal{C}}\) is the cone of completely positive matrices; and P is the homogenized cone of the “box” [0, 1]n. Through various results and examples, we demonstrate the strength of the theory for these cases. For example, we achieve for the first time a separation algorithm for 5 × 5 completely positive matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anstreicher, K.M., Burer, S.: Computable representations for convex hulls of low-dimensional quadratic forms. Manuscript, University of Iowa, Iowa City, February (2007). Revised June (2009). To appear in Mathematical Programming (Series B)

  2. Berman A., Shaked-Monderer N.: Completely Positive Matrices. World Scientific, Singapore (2003)

    Book  MATH  Google Scholar 

  3. Berman A., Xu C.: 5 × 5 completely positive matrices. Linear Algebra Appl. 393, 55–71 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Borchers B.: CSDP, a C library for semidefinite programming. Optim. Methods Softw. 11(1), 613–623 (1999)

    Article  MathSciNet  Google Scholar 

  5. Bundfuss S., Dür M.: Algorithmic copositivity detection by simplicial partition. Linear Algebra Appl. 428, 1511–1523 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Burer S.: On the copositive representation of binary and continuous nonconvex quadratic programs. Math. Program. 120, 479–495 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Burer S., Anstreicher K.M., Dür M.: The difference between 5 × 5 doubly nonnegative and completely positive matrices. Linear Algebra Appl. 431(9), 1539–1552 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Burer S., Letchford A.N.: On non-convex quadratic programming with box constraints. SIAM J. Optim. 20(2), 1073–1089 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Burer S., Vandenbussche D.: Globally solving box-constrained nonconvex quadratic programs with semidefinite-based finite branch-and-bound. Comput. Optim. Appl. 43(2), 181–195 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. de Klerk E., Pasechnik D.V.: Approximation of the stability number of a graph via copositive programming. SIAM J. Optim. 12(4), 875–892 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dickinson P.J.C.: An improved characterisation of the interior of the completely positive cone. Electron. J. Linear Algebra 20, 723–729 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Dong, H., Anstreicher, K.: Separating doubly nonnegative and completely positive matrices. Math. Program., Ser. A (2011, to appear)

  13. Dür M., Still G.: Interior points of the completely positive cone. Electron. J. Linear Algebra 17, 48–53 (2008)

    MathSciNet  MATH  Google Scholar 

  14. Dür M.: Copositive programming—a survey. In: Deihl, M., Glineur, F., Jarlebring, E., Michiels, W. (eds) Recent advances in optimization and its applications in engineering, pp. 3–20. Springer, Berlin (2010)

    Chapter  Google Scholar 

  15. Floudas, C., Visweswaran, V.: Quadratic optimization. In: Horst, R., Pardalos, P. (eds.) Handbook of Global Optimization, pp. 217–269 (1995)

  16. Gould, N.I.M., Toint, P.L.: Numerical methods for large-scale non-convex quadratic programming. In: Trends in Industrial and Applied Mathematics, vol. 72, pp. 149–179. Amritsar (2001), Appl. Optim., Kluwer Acad. Publ., Dordrecht (2002)

  17. Hiriart-Urruty J.-B., Seeger A.: A variational approach to copositive matrices. SIAM Rev. 52, 593–629 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hoffman A.J., Pereira F.: On copositive matrices with −1, 0, 1 entries. J. Comb. Theory A 14, 302–309 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  19. Johnson C.R., Reams R.: Spectral theory of copositive matrices. Linear Algebra Appl. 395, 275–281 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Löfberg, J.: Yalmip: a toolbox for modeling and optimization in matalb. In: Proceedings of the CACSD Conference. Taipei, Taiwan (2004)

  21. Lovász L., Schrijver A.: Cones of matrices and set-functions and 0-1 optimization. SIAM J. Optim. 1, 166–190 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  22. Maxfield, J.E., Minc, H.: On the matrix equation XX = A. Proc. Edinb. Math. Soc. 13(2), 125–129 (1962–1963)

    Google Scholar 

  23. Murty K.G., Kabadi S.N.: Some NP-complete problems in quadratic and nonlinear programming. Math. Program. 39(2), 117–129 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  24. Padberg, M.: The Boolean quadric polytope: some characteristics, facets and relatives. Math. Program. 45(1, (Ser. B)), 139–172 (1989)

  25. Parrilo, P.: Structured Semidefinite Programs and Semi-Algebraic Geometry Methods in Robustness and Optimization. PhD thesis, California Institute of Technology, Pasadena (2000)

  26. Sahinidis N.V.: BARON: a general purpose global optimization software package. J. Glob. Optim. 8, 201–205 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sherali H.D., Adams W.P.: A Reformulation-Linearization Technique (RLT) for Solving Discrete and Continuous Nonconvex Problems. Kluwer, Dordrecht (1997)

    Google Scholar 

  28. Sturm J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11/12(1–4), 625–653 (1999)

    Article  MathSciNet  Google Scholar 

  29. Sturm J.F., Zhang S.: On cones of nonnegative quadratic functions. Math. Oper. Res. 28(2), 246–267 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Väliaho H.: Criteria for copositive matrices. Linear Algebra Appl. 81, 19–34 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  31. Väliaho H.: Almost copositive matrices. Linear Algebra Applications 116, 121–134 (1989)

    Article  MATH  Google Scholar 

  32. Vandenbussche D., Nemhauser G.: A branch-and-cut algorithm for nonconvex quadratic programs with box constraints. Math. Program. 102(3), 559–575 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Vandenbussche D., Nemhauser G.: A polyhedral study of nonconvex quadratic programs with box constraints. Math. Program. 102(3), 531–557 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbo Dong.

Additional information

The research of both authors was supported in part by NSF Grant CCF-0545514. Most of the work was done when the corresponding author was a student in University of Iowa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burer, S., Dong, H. Separation and relaxation for cones of quadratic forms. Math. Program. 137, 343–370 (2013). https://doi.org/10.1007/s10107-011-0495-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-011-0495-6

Keywords

Mathematics Subject Classification (2000)

Navigation