Log in

Polynomial-sized semidefinite representations of derivative relaxations of spectrahedral cones

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

We give explicit polynomial-sized (in \(n\) and \(k\)) semidefinite representations of the hyperbolicity cones associated with the elementary symmetric polynomials of degree \(k\) in \(n\) variables. These convex cones form a family of non-polyhedral outer approximations of the non-negative orthant that preserve low-dimensional faces while successively discarding high-dimensional faces. More generally we construct explicit semidefinite representations (polynomial-sized in \(k,m\), and \(n\)) of the hyperbolicity cones associated with \(k\)th directional derivatives of polynomials of the form \(p(x)=\det (\sum _{i=1}^{n}A_i x_i)\) where the \(A_i\) are \(m\times m\) symmetric matrices. These convex cones form an analogous family of outer approximations to any spectrahedral cone. Our representations allow us to use semidefinite programming to solve the linear cone programs associated with these convex cones as well as their (less well understood) dual cones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Blekherman, G., Parrilo, P.A., Thomas, R.R. (eds.): Semidefinite Optimization and Convex Algebraic Geometry. MOS-SIAM Series on Optimization. SIAM, Philadelphia (2013)

  2. Brändén, P.: Hyperbolicity cones of elementary symmetric polynomials are spectrahedral (2012). Optim. Lett. 8(5), 1773–1782 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Choe, Y.B., Oxley, J.G., Sokal, A.D., Wagner, D.G.: Homogeneous multivariate polynomials with the half-plane property. Adv. Appl. Math. 32(1–2), 88–187 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gouveia, J., Netzer, T.: Positive polynomials and projections of spectrahedra. SIAM J. Optim. 21(3), 960 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gouveia, J., Parrilo, P.A., Thomas, R.R.: Lifts of convex sets and cone factorizations. Math. Oper. Res. 38(2), 248–264 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gårding, L.: An inequality for hyperbolic polynomials. J. Math. Mech. 8(6), 957–965 (1959)

    MathSciNet  MATH  Google Scholar 

  7. Güler, O.: Hyperbolic polynomials and interior point methods for convex programming. Math. Oper. Res. 22(2), 350–377 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Helton, J.W., Vinnikov, V.: Linear matrix inequality representation of sets. Commun. Pure Appl. Math. 60(5), 654–674 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kaibel, V., Pashkovich, K., Theis, D.: Symmetry matters for the sizes of extended formulations. In: Integer Programming and Combinatorial Optimization, Lecture Notes in Computer Science, vol. 6080, pp. 135–148. Springer, Berlin (2010)

  10. Lewis, A.S., Parrilo, P.A., Ramana, M.V.: The Lax conjecture is true. Proc. Am. Math. Soc. 133(9), 2495–2500 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Löfberg, J.: YALMIP: a toolbox for modeling and optimization in MATLAB. In: Proceedings of the CACSD Conference. Taipei, Taiwan (2004). http://users.isy.liu.se/johanl/yalmip

  12. Miranda, H.F., Thompson, R.C.: Group majorization, the convex hulls of sets of matrices, and the diagonal element-singular value inequalities. Linear Algebr. Appl. 199, 131–141 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Nemirovski, A.: Advances in convex optimization: conic programming. In: Proceedings of the International Congress of Mathematicians: Madrid, August 22–30, 2006: invited lectures, pp. 413–444 (2006)

  14. Nemirovski, A., Ben-Tal, A.: Lectures on Modern Convex Optimization: Analysis, Algorithms and Engineering Applications. MOS-SIAM Series on Optimization. SIAM, Philadelphia (2001)

    Google Scholar 

  15. Nesterov, Y., Nemirovskii, A.: Interior Point Polynomial Algorithms in Convex Programming, SIAM Studies in Applied Mathematics, vol. 13. SIAM, Philadelphia (1993)

  16. Nie, J., Parrilo, P.A., Sturmfels, B.: Semidefinite representation of the \(k\)-ellipse. In: Algorithms in Algebraic Geometry, The IMA Volumes in Mathematics and its Applications, vol. 146, pp. 117–132. Springer, New York (2008)

  17. Ramana, M., Goldman, A.J.: Some geometric results in semidefinite programming. J. Glob. Optim. 7(1), 33–50 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Renegar, J.: Hyperbolic programs, and their derivative relaxations. Found. Comput. Math. 6, 59–79 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rockafellar, R.T.: Convex Analysis, vol. 28. Princeton university press, Princeton (1997)

  20. Sanyal, R.: On the derivative cones of polyhedral cones. Adv. Geom. 13(2), 315–321 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sanyal, R., Sottile, F., Sturmfels, B.: Orbitopes. Mathematika 57(02), 275–314 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Toh, K.C., Todd, M.J., Tütüncü, R.H.: SDPT3—a MATLAB software package for semidefinite programming, version 1.3. Optim. Methods Softw. 11(1–4), 545–581 (1999)

    Article  MathSciNet  Google Scholar 

  23. Zinchenko, Y.: On hyperbolicity cones associated with elementary symmetric polynomials. Optim. Lett. 2(3), 389–402 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous referees for many helpful suggestions that led to substantial improvements in the presentation of the paper. This research was funded by the Air Force Office of Scientific Research under Grants FA9550-11-1-0305 and FA9550-12-1-0287.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Saunderson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saunderson, J., Parrilo, P.A. Polynomial-sized semidefinite representations of derivative relaxations of spectrahedral cones. Math. Program. 153, 309–331 (2015). https://doi.org/10.1007/s10107-014-0804-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-014-0804-y

Keywords

Mathematics Subject Classification

Navigation