Log in

A numerical method for analysis and simulation of diffusive viscous wave equations with variable coefficients on polygonal meshes

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

In this study, we design and analyze weak Galerkin finite element methods to approximate diffusive viscus wave equations with variable coefficients on polygonal meshes. The proposed method has numerous assets, including supporting a higher order of convergence and general polygonal meshes. We investigated the convergence analysis using a two-step technique that discretizes first in space and then in time. A second-order Newmark scheme is employed to develop the temporal discretization and obtain the optimal order of convergence rate in \(L^{\infty }(L^2)\) and \(L^{\infty }(H^1)\) norms. In other words, we attain \({{\mathcal {O}}}(h^{k+1}+\tau ^2)\) in \(L^{\infty }(L^2)\) norm and \({{\mathcal {O}}}(h^{k}+\tau ^2)\) in \(L^{\infty }(H^1)\) norm. We performed several numerical experiments in a two-dimensional setting, illustrating our theoretical convergence findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availibility statement

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Ahmed, A.-T., Mu, L.: A new upwind weak Galerkin finite element method for linear hyperbolic equations. J. Comput. Appl. Math. 390, 113376 (2021)

    MathSciNet  MATH  Google Scholar 

  2. Ammari, H., Chen, D., Zou, J.: Well-posedness of an electric interface model and its finite element approximation. Math. Models Methods Appl. Sci. 26(03), 601–625 (2016)

    MathSciNet  MATH  Google Scholar 

  3. Baker, G.A.: Error estimates for finite element methods for second order hyperbolic equations. SIAM J. Numer. Anal. 13(4), 564–576 (1976)

    MathSciNet  MATH  Google Scholar 

  4. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998)

    MathSciNet  MATH  Google Scholar 

  5. Deka, B., Kumar, N.: A systematic study on weak Galerkin finite element method for second order parabolic problems. Numer. Methods Partial Differ. Equ. 39(3), 2444–2474 (2023)

  6. Deka, B., Kumar, N.: Error estimates in weak Galerkin finite element methods for parabolic equations under low regularity assumptions. Appl. Numer. Math. 162, 81–105 (2021)

    MathSciNet  MATH  Google Scholar 

  7. Deka, B., Roy, P.: Weak Galerkin finite element methods for electric interface model with nonhomogeneous jump conditions. Numer. Methods Partial Differ. Equ. 36(4), 734–755 (2020)

    MathSciNet  MATH  Google Scholar 

  8. Dutta, J., Deka, B.: Optimal a priori error estimates for the finite element approximation of dual-phase-lag bio heat model in heterogeneous medium. J. Sci. Comput. 87(2), 1–32 (2021)

    MathSciNet  MATH  Google Scholar 

  9. Gao, L., Liang, D., Zhang, B.: Error estimates for mixed finite element approximations of the viscoelasticity wave equation. Math. Methods Appl. Sci. 27(17), 1997–2016 (2004)

    MathSciNet  MATH  Google Scholar 

  10. Gurtin, M.E., Pipkin, A.C.: A general theory of heat conduction with finite wave speeds. Arch. Ration. Mech. Anal. 31(2), 113–126 (1968)

    MathSciNet  MATH  Google Scholar 

  11. Han, W., Gao, J., Zhang, Y., Xu, W.: Well-posedness of the diffusive-viscous wave equation arising in geophysics. J. Math. Anal. Appl. 486(2), 123914 (2020)

    MathSciNet  MATH  Google Scholar 

  12. Han, W., Song, C., Wang, F., Gao, J.: Numerical analysis of the diffusive-viscous wave equation. Comput. Math. Appl. 102, 54–64 (2021)

    MathSciNet  MATH  Google Scholar 

  13. Huang, Y., Li, J., Li, D.: Develo** weak Galerkin finite element methods for the wave equation. Numer. Methods Partial Differ. Equ. 33(3), 868–884 (2017)

    MathSciNet  MATH  Google Scholar 

  14. Karaa, S.: Error estimates for finite element approximations of a viscous wave equation. Numer. Funct. Anal. Optim. 32(7), 750–767 (2011)

    MathSciNet  MATH  Google Scholar 

  15. Larsson, S., Thomée, V., Wahlbin, L.B.: Finite-element methods for a strongly damped wave equation. IMA J. Numer. Anal. 11(1), 115–142 (1991)

    MathSciNet  MATH  Google Scholar 

  16. Li, Q.H., Wang, J.: Weak Galerkin finite element methods for parabolic equations. Numer. Methods Partial Differ. Equ. 29(6), 2004–2024 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Lim, H., Kim, S., Douglas, J., Jr.: Numerical methods for viscous and nonviscous wave equations. Appl. Numer. Math. 57(2), 194–212 (2007)

    MathSciNet  MATH  Google Scholar 

  18. Lin, Y.P.: A mixed type boundary problem describing the propagation of disturbances in viscous media i, weak solution for quasi-linear equations. J. Math. Anal. Appl. 135, 644–653 (1988)

    MathSciNet  MATH  Google Scholar 

  19. Lin, R., Ye, X., Zhang, S., Zhu, P.: A weak Galerkin finite element method for singularly perturbed convection–diffusion–reaction problems. SIAM J. Numer. Anal. 56(3), 1482–1497 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Ling, D., Shu, C.-W., Yan, W.: Local discontinuous Galerkin methods for diffusive-viscous wave equations. J. Comput. Appl. Math. 419, 114690 (2023)

    MathSciNet  MATH  Google Scholar 

  21. Liu, J., Tavener, S., Wang, Z.: Penalty-free any-order weak Galerkin fems for elliptic problems on quadrilateral meshes. J. Sci. Comput. 83, 47 (2020)

    MathSciNet  MATH  Google Scholar 

  22. Mensah, V., Hidalgo, A., Ferro, R.M.: Numerical modelling of the propagation of diffusive-viscous waves in a fluid-saturated reservoir using finite volume method. Geophys. J. Int. 218(1), 33–44 (2019)

    Google Scholar 

  23. Mu, L., Chen, Z.: A new weno weak Galerkin finite element method for time dependent hyperbolic equations. Appl. Numer. Math. 159, 106–124 (2021)

    MathSciNet  MATH  Google Scholar 

  24. Mu, L., Ye, J.W.X.: Weak Galerkin finite element methods on polytopal meshes. Int. J. Numer. Anal. Model. 12(1), 31–53 (2015)

    MathSciNet  MATH  Google Scholar 

  25. Mu, L., Wang, J., Ye, X.: A least-squares-based weak Galerkin finite element method for second order elliptic equations. SIAM J. Sci. Comput. 39(4), A1531–A1557 (2017)

    MathSciNet  MATH  Google Scholar 

  26. Nikolic, V., Wohlmuth, B.: A priori error estimates for the finite element approximation of Westervelt’s quasi-linear acoustic wave equation. SIAM J. Numer. Anal. 57(4), 1897–1918 (2019)

    MathSciNet  MATH  Google Scholar 

  27. Pani, A.K., Yuan, J.Y.: Mixed finite element method for a strongly damped wave equation. Numer. Methods Partial Differ. Equ. 17(2), 105–119 (2001)

    MathSciNet  MATH  Google Scholar 

  28. Qiu, T., Tien, C.: Short-pulse laser heating on metals. Int. J. Heat Mass Transf. 35(3), 719–726 (1992)

    Google Scholar 

  29. Quintal, B., Schmalholz, S.M., Podladchikov, Y.Y., Carcione, J.M.: Seismic low-frequency anomalies in multiple reflections from thinly layered poroelastic reservoirs. In: SEG Technical Program Expanded Abstracts 2007. Society of Exploration Geophysicists, pp. 1690–1695 (2007)

  30. Raynal, M.L.: On some nonlinear problems of diffusion. In: Sugan, R. (ed.) Volterra Equations, pp. 251–266. Springer, Berlin (1979)

    Google Scholar 

  31. Talischi, C., Paulino, G.H., Pereira, A., Menezes, I.F.: Polymesher: a general-purpose mesh generator for polygonal elements written in matlab. Struct. Multidiscip. Optim. 45(3), 309–328 (2012)

    MathSciNet  MATH  Google Scholar 

  32. Thomée, V., Wahlbin, L.: Maximum-norm estimates for finite-element methods for a strongly damped wave equation. BIT Numer. Math. 44(1), 165–179 (2004)

    MathSciNet  MATH  Google Scholar 

  33. Tzou, D.Y.: A unified field approach for heat conduction from macro-to micro-scales (1995)

  34. Tzou, D., Chiu, K.: Temperature-dependent thermal lagging in ultrafast laser heating. Int. J. Heat Mass Transf. 44(9), 1725–1734 (2001)

    MATH  Google Scholar 

  35. van Rensburg, N., Stapelberg, B.: Existence and uniqueness of solutions of a general linear second-order hyperbolic problem. IMA J. Appl. Math. 84(1), 1–22 (2018)

    MathSciNet  MATH  Google Scholar 

  36. Van Rensburg, N., Van Der Merwe, A.: Analysis of the solvability of linear vibration models. Appl. Anal. 81(5), 1143–1159 (2002)

    MathSciNet  MATH  Google Scholar 

  37. Wang, J., Ye, X.: A weak Galerkin finite element method for second-order elliptic problems. J. Comput. Appl. Math. 241, 103–115 (2013)

    MathSciNet  MATH  Google Scholar 

  38. Wang, J., Ye, X.: A weak Galerkin mixed finite element method for second order elliptic problems. Math. Comp. 83(289), 2101–2126 (2014)

    MathSciNet  MATH  Google Scholar 

  39. Wang, J., Wang, R., Zhai, Q., Zhang, R.: A systematic study on weak Galerkin finite element methods for second order elliptic problems. J. Sci. Comput. 74(3), 1369–1396 (2018)

    MathSciNet  MATH  Google Scholar 

  40. Wang, X., Gao, F., Sun, Z.: Weak Galerkin finite element method for viscoelastic wave equations. J. Comput. Appl. Math. 375, 112816 (2020)

    MathSciNet  MATH  Google Scholar 

  41. Zhai, Q., Zhang, R., Malluwawadu, N., Hussain, S.: The weak Galerkin method for linear hyperbolic equation. Commun. Comput. Phys 24, 152–166 (2018)

    MathSciNet  MATH  Google Scholar 

  42. Zhang, H., Zou, Y., Xu, Y., Zhai, Q., Yue, H.: Weak Galerkin finite element method for second order parabolic equations. Int. J. Numer. Anal. Model. 13(4), 525–544 (2016)

    MathSciNet  MATH  Google Scholar 

  43. Zhang, M., Yan, W., **g, F., Zhao, H.: Discontinuous Galerkin method for the diffusive-viscous wave equation. Appl. Numer. Math. 183, 118–139 (2023)

    MathSciNet  MATH  Google Scholar 

  44. Zhao, H., Gao, J., Chen, Z.: Stability and numerical dispersion analysis of finite-difference method for the diffusive-viscous wave equation. Int. J. Num. Anal. Mod 5(1–2), 66–78 (2014)

    MathSciNet  MATH  Google Scholar 

  45. Zhao, H., Gao, J., Zhao, J.: Modeling the propagation of diffusive-viscous waves using flux-corrected transport-finite-difference method. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 7(3), 838–844 (2014)

    Google Scholar 

  46. Zhen-dong, L.: The mixed finite element method for the non stationary conduction–convection problems. Chin. J. Numer. Math. Appl. 20(2), 29–59 (1998)

    Google Scholar 

  47. Zhou, S., Gao, F., Li, B., Sun, Z.: Weak Galerkin finite element method with second-order accuracy in time for parabolic problems. Appl. Math. Lett. 90, 118–123 (2019)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The second author gratefully acknowledges the research support of the Science and Engineering Research Board (SERB), Govt. of India, through the Grant vide MATRICS Project no. MTR/2021/000115.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naresh Kumar.

Ethics declarations

Conflict of interest

The authors certify that there is no actual or potential conflict of interest in relation to this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Lemma 6.1

Let \(w\in H^1(0,T; H^2(\Omega ))\) be the solutions of the equation (3.15) and \(w_h\) be its WG approximation. Then, there exists a constant C such that

$$\begin{aligned} {\left| \hspace{-1.0625pt}\left| \hspace{-1.0625pt}\left| {\Pi }_{h}w-w_{h}\right| \hspace{-1.0625pt}\right| \hspace{-1.0625pt}\right| }\le Ch\Vert \zeta _u\Vert _{L^2(J;L^2(\Omega ))}, \end{aligned}$$
(6.1)

Proof

Following the analysis used to derive (3.7), we obtain

$$\begin{aligned}{} & {} {{\mathcal {A}}}_{1,w}({\Pi }_{h}w, \phi _h)+{\mathcal A}_{2,w}(({\Pi }_{h}w)_{t}, \phi _{h}) = (f_w, \phi _0)+\ell _1(w, \phi _h)+ \ell _2(w, \phi _{h}) \nonumber \\{} & {} \quad +\ell _3(w^{\prime }, \phi _h)+ \ell _4(w^{\prime }, \phi _{h}),\;\;\forall \;\phi _h=\{\phi _0, \phi _b\}\in {\mathcal M}_h^0. \end{aligned}$$
(6.2)

Next, we may define \(w_h\in {{\mathcal {M}}}_h^0\) as the solution to the weak Galerkin approximation of the Eq. (3.15) that follows

$$\begin{aligned} {{\mathcal {A}}}_{1,w}(w_h, \varphi _h)+{{\mathcal {A}}}_{2,w}(w_h^{\prime }, \varphi _h) = (f_{w}, \varphi _0),\;\;\forall \; \varphi _h=\{ \varphi _0, \varphi _b\}\in {{\mathcal {M}}}_h^0, \end{aligned}$$
(6.3)

with \(w_h(\tau ) = {\Pi }_{h}w^0.\)

Now, subtracting (6.3) from the Eq. (6.2), we arrive at the following error relation for \({\tilde{e}}_h: = {\Pi }_{h}w-{w}_{h}\)

$$\begin{aligned}{} & {} {{\mathcal {A}}}_{1,w}({\tilde{e}}_h(t), \phi _h)+{\mathcal A}_{2,w}({\tilde{e}}_{h}^{\prime }(t), \phi _{h}) = \ell _1(w, \phi _h)+ \ell _2(w, \phi _{h})+\ell _3(w^{\prime }, \phi _h) \nonumber \\{} & {} \quad +\ell _4(w^{\prime },\phi _{h}),\;\forall \;\varphi _h\in {\mathcal M}_h^0,\;t\in (0, T]. \end{aligned}$$
(6.4)

Finally, setting \(\phi _h={\tilde{e}}_h\) in (6.4) and then standard analysis as we did in Theorem 3.1 combined with the estimations (3.28) and (3.32) yields the following estimate

$$\begin{aligned} {\left| \hspace{-1.0625pt}\left| \hspace{-1.0625pt}\left| {\tilde{e}}_h(t)\right| \hspace{-1.0625pt}\right| \hspace{-1.0625pt}\right| }^2\le & {} C\big ({\left| \hspace{-1.0625pt}\left| \hspace{-1.0625pt}\left| {\tilde{e}}_h(0)\right| \hspace{-1.0625pt}\right| \hspace{-1.0625pt}\right| }^2+h^2\Vert w\Vert _{H^1(0, T;H^{2}(\Omega ))}^2\big )\\\le & {} Ch^2\Vert w\Vert _{H^1(0, T;H^{2}(\Omega ))}^2\\\le & {} Ch^2\Vert \zeta _u\Vert ^2_{L^2(J;L^2(\Omega ))}. \end{aligned}$$

Here, we have used the estimate (3.22) together with the fact that \({\tilde{e}}_h(0)= 0.\) The proof is completed. \(\square \)

Remark 6.1

We recall a dual problem that seeks a solution \(w\in H^1(J; H^2(\Omega ))\) such that

$$\begin{aligned} -\nabla \cdot \big (\varepsilon \nabla w)-(\beta \nabla w^{\prime })\big ) = \zeta _u\;\;\text{ in }\;\;\Omega \times J, \end{aligned}$$
(6.5)

and \(w(\tau ) = 0\) for some \(\tau \in J.\)

We may define \(w_h\in {{\mathcal {M}}}_h^0\) as the solution to the discrete problem of the Eq. (6.5) that follows

$$\begin{aligned} {{\mathcal {A}}}_{1,w}(w_h, \varphi _h)-{{\mathcal {A}}}_{2,w}(w_h^{\prime }, \varphi _h) = (\zeta _{u}, \varphi _0),\;\;\forall \; \varphi _h=\{ \varphi _0, \varphi _b\}\in {{\mathcal {M}}}_h^0, \end{aligned}$$
(6.6)

with \(w_h(\tau ) = 0.\)

Setting \( \varphi _h=w_h\) in (6.6) and using the coercive property (2.11), we obtain

$$\begin{aligned} \sigma _{*}{\left| \hspace{-1.0625pt}\left| \hspace{-1.0625pt}\left| w_h\right| \hspace{-1.0625pt}\right| \hspace{-1.0625pt}\right| }^2-\frac{1}{2}\frac{d}{dt}\big ({\mathcal A}_{2,w}(w_h(s), w_h(s))\big )\le \Vert \zeta _{u}\Vert \Vert w_0\Vert . \end{aligned}$$

Next, integrate the above equation in \([0, \tau ]\) to obtain

$$\begin{aligned} \sigma _{*}{\left| \hspace{-1.0625pt}\left| \hspace{-1.0625pt}\left| w_h\right| \hspace{-1.0625pt}\right| \hspace{-1.0625pt}\right| }^2+\frac{1}{2}{{\mathcal {A}}}_{2,w}(w_h(0), w_h(0)))\le \Vert \zeta _{u}\Vert \Vert w_0\Vert . \end{aligned}$$

Here, we used the fact that \(w_h(\tau ) =0\) and hence, \({\mathcal A}_{2,w}(w_h(\tau ), w_h(\tau )) = 0.\)

Now, we apply the Poincaŕe-type inequality (2.15) and positive definiteness of \({{\mathcal {A}}}_{2,w}(\cdot , \cdot )\) in the above estimate, we get

$$\begin{aligned} {\left| \hspace{-1.0625pt}\left| \hspace{-1.0625pt}\left| w_h\right| \hspace{-1.0625pt}\right| \hspace{-1.0625pt}\right| }\le C\Vert \zeta _{u}\Vert . \end{aligned}$$
(6.7)

When we set \( \varphi _h=w_h^{\prime }\) in (6.6), we can get

$$\begin{aligned} {\left| \hspace{-1.0625pt}\left| \hspace{-1.0625pt}\left| w_h^{\prime }\right| \hspace{-1.0625pt}\right| \hspace{-1.0625pt}\right| }\le C\Vert \zeta _{u}\Vert . \end{aligned}$$
(6.8)

The following estimates are satisfied by \(w_h\), which is the WG approximation to w (see, estimate (6.1))

$$\begin{aligned} {\left| \hspace{-1.0625pt}\left| \hspace{-1.0625pt}\left| {\Pi }_hw-w_h\right| \hspace{-1.0625pt}\right| \hspace{-1.0625pt}\right| }\le Ch\Vert \zeta _u\Vert _{L^2(L^2)}. \end{aligned}$$
(6.9)

Now, we combine estimates (6.7) and (6.9) to obtain

$$\begin{aligned} {\left| \hspace{-1.0625pt}\left| \hspace{-1.0625pt}\left| {\Pi }_{h}w\right| \hspace{-1.0625pt}\right| \hspace{-1.0625pt}\right| }={\left| \hspace{-1.0625pt}\left| \hspace{-1.0625pt}\left| {\Pi }_hw-w_h+w_h\right| \hspace{-1.0625pt}\right| \hspace{-1.0625pt}\right| }\le & {} {\left| \hspace{-1.0625pt}\left| \hspace{-1.0625pt}\left| {\Pi }_hw-w_h\right| \hspace{-1.0625pt}\right| \hspace{-1.0625pt}\right| } +{\left| \hspace{-1.0625pt}\left| \hspace{-1.0625pt}\left| w_h\right| \hspace{-1.0625pt}\right| \hspace{-1.0625pt}\right| }\nonumber \\\le & {} C\Vert \zeta _u\Vert _{L^2(L^2)}. \end{aligned}$$
(6.10)

As a consequence, we can prove that

$$\begin{aligned} {\left| \hspace{-1.0625pt}\left| \hspace{-1.0625pt}\left| {\Pi }_{h}w^{\prime }\right| \hspace{-1.0625pt}\right| \hspace{-1.0625pt}\right| }={\left| \hspace{-1.0625pt}\left| \hspace{-1.0625pt}\left| {\Pi }_hw^{\prime }-w_h^{\prime }+w^{\prime }_h\right| \hspace{-1.0625pt}\right| \hspace{-1.0625pt}\right| } \le C\Vert \zeta _u\Vert _{L^2(L^2)}. \end{aligned}$$
(6.11)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Deka, B. A numerical method for analysis and simulation of diffusive viscous wave equations with variable coefficients on polygonal meshes. Calcolo 60, 47 (2023). https://doi.org/10.1007/s10092-023-00541-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-023-00541-5

Keywords

Mathematics Subject Classification

Navigation