Log in

SyReNN: A tool for analyzing deep neural networks

  • General
  • Special Issue: TACAS 2021
  • Published:
International Journal on Software Tools for Technology Transfer Aims and scope Submit manuscript

Abstract

Deep Neural Networks (DNNs) are rapidly gaining popularity in a variety of important domains. Unfortunately, modern DNNs have been shown to be vulnerable to a variety of attacks and buggy behavior. This has motivated recent work in formally analyzing the properties of such DNNs. This paper introduces SyReNN, a tool for understanding and analyzing a DNN by computing its symbolic representation. The key insight is to decompose the DNN into linear functions. Our tool is designed for analyses using low-dimensional subsets of the input space, a unique design point in the space of DNN analysis tools. We describe the tool and the underlying theory, then evaluate its use and performance on three case studies: computing Integrated Gradients, visualizing a DNN’s decision boundaries, and repairing buggy DNNs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. As noted in [25], this technically requires a slight strengthening of the definition of \(\widehat{{f}_{\restriction X}}\) which is satisfied by our algorithms as defined above.

References

  1. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016), http://www.deeplearningbook.org

  2. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the Inception Architecture for Computer Vision. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. pp. 2818–2826. IEEE Computer Society (2016). https://doi.org/10.1109/CVPR.2016.308

  3. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet Classification with Deep Convolutional Neural Networks. In: Bartlett, P.L., Pereira, F.C.N., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012. Proceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United States. pp. 1106–1114 (2012), http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks

  4. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In: Burstein, J., Doran, C., Solorio, T. (eds.) Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers). pp. 4171–4186. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/n19-1423

  5. Julian, K.D., Kochenderfer, M.J., Owen, M.P.: Deep neural network compression for aircraft collision avoidance systems. CoRR ar**v:1810.04240 (2018)

  6. Ching, T., Himmelstein, D.S., Beaulieu-Jones, B.K., Kalinin, A.A., Do, B.T., Way, G.P., Ferrero, E., Agapow, P.M., Zietz, M., Hoffman, M.M., **e, W., Rosen, G.L., Lengerich, B.J., Israeli, J., Lanchantin, J., Woloszynek, S., Carpenter, A.E., Shrikumar, A., Xu, J., Cofer, E.M., Lavender, C.A., Turaga, S.C., Alexandari, A.M., Lu, Z., Harris, D.J., DeCaprio, D., Qi, Y., Kundaje, A., Peng, Y., Wiley, L.K., Segler, M.H.S., Boca, S.M., Swamidass, S.J., Huang, A., Gitter, A., Greene, C.S.: Opportunities and obstacles for deep learning in biology and medicine. J Royal Soc Interf 15(141), 20170387 (2018). https://doi.org/10.1098/rsif.2017.0387

    Article  Google Scholar 

  7. Miotto, R., Wang, F., Wang, S., Jiang, X., Dudley, J.T.: Deep learning for healthcare: review, opportunities and challenges. Briefings Bioinform. 19(6), 1236–1246 (2018). https://doi.org/10.1093/bib/bbx044

    Article  Google Scholar 

  8. Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L.H., Aerts, H.J.: Artificial Intelligence in Radiology. Nature Reviews Cancer p. 1 (2018)

  9. Mendelson, E.B.: Artificial intelligence in breast imaging: potentials and limitations. Am. J. Roentgenol. 212(2), 293–299 (2019)

    Article  Google Scholar 

  10. Sharma, H., Park, J., Mahajan, D., Amaro, E., Kim, J.K., Shao, C., Mishra, A., Esmaeilzadeh, H.: From High-Level Deep Neural Models to FPGAS. In: 49th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 2016, Taipei, Taiwan, October 15-19, 2016. pp. 17:1–17:12. IEEE Computer Society (2016). https://doi.org/10.1109/MICRO.2016.7783720

  11. Chen, J., Ran, X.: Deep learning with edge computing: a review. Proc. IEEE 107(8), 1655–1674 (2019). https://doi.org/10.1109/JPROC.2019.2921977

    Article  Google Scholar 

  12. Gopinath, S., Ghanathe, N., Seshadri, V., Sharma, R.: Compiling kb-Sized Machine Learning Models to Tiny IOT Devices. In: McKinley, K.S., Fisher, K. (eds.) Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019. pp. 79–95. ACM (2019). https://doi.org/10.1145/3314221.3314597

  13. Kumar, A., Seshadri, V., Sharma, R.: Shiftry: RNN inference in 2kb of RAM. Proc. ACM Program. Lang. 4(OOPSLA), 182:1-182:30 (2020). https://doi.org/10.1145/3428250

    Article  Google Scholar 

  14. Kusupati, A., Singh, M., Bhatia, K., Kumar, A., Jain, P., Varma, M.: Fastgrnn: A Fast, Accurate, Stable and Tiny Kilobyte Sized Gated Recurrent Neural Network. In: Bengio, S., Wallach, H.M., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada. pp. 9031–9042 (2018)

  15. Han, S., Mao, H., Dally, W.J.: Deep compression: Compressing Deep Neural Network with Pruning, Trained Quantization and Huffman Coding. In: Bengio, Y., LeCun, Y. (eds.) 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings (2016), arxiv:1510.00149

  16. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.J., Fergus, R.: Intriguing Properties of Neural Networks. In: Bengio, Y., LeCun, Y. (eds.) 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings (2014), arxiv:1312.6199

  17. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and Harnessing Adversarial Examples. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings (2015), arxiv:1412.6572

  18. Moosavi-Dezfooli, S., Fawzi, A., Frossard, P.: Deepfool: A Simple and Accurate Method to Fool Deep Neural Networks. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. pp. 2574–2582. IEEE Computer Society (2016). https://doi.org/10.1109/CVPR.2016.282

  19. Carlini, N., Wagner, D.A.: Audio Adversarial Examples: Targeted attacks on speech-to-text. In: 2018 IEEE Security and Privacy Workshops, SP Workshops 2018, San Francisco, CA, USA, May 24, 2018. pp. 1–7. IEEE Computer Society (2018). https://doi.org/10.1109/SPW.2018.00009

  20. Nguyen, A.M., Yosinski, J., Clune, J.: Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015. pp. 427–436. IEEE Computer Society (2015). https://doi.org/10.1109/CVPR.2015.7298640

  21. Lee, D.: US opens investigation into Tesla after fatal crash. BBC. https://www.bbc.co.uk/news/technology-36680043 (Jul 2016), accessed: 2020-06-06

  22. Gonzales, R.: Feds say self-driving Uber SUV did not recognize jaywalking pedestrian in fatal crash. NPR https://www.npr.org/2019/11/07/777438412/feds-say-self-driving-uber-suv-did-not-recognize-jaywalking-pedestrian-in-fatal- (Nov 2019), accessed: 2020-06-06

  23. Hern, A.: Facebook Translates Good Morning into Attack them, Leading to Arrest. https://www.theguardian.com/technology/2017/oct/24/facebook-palestine-israel-translates-good-morning-attack-them-arrest (Jun 2017), Accessed: 2020-06-06

  24. Hill, K.: Wrongfully Accused by an Algorithm. New York Times. https://www.nytimes.com/2020/06/24/technology/facial-recognition-arrest.html (Jun 2020), accessed: 2020-06-06

  25. Sotoudeh, M., Thakur, A.V.: Computing Linear Restrictions of Neural Networks. In: Wallach, H.M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada. pp. 14132–14143 (2019), http://papers.nips.cc/paper/9562-computing-linear-restrictions-of-neural-networks

  26. Singh, G., Gehr, T., Mirman, M., Püschel, M., Vechev, M.T.: Fast and Effective Robustness Certification. In: Bengio, S., Wallach, H.M., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada. pp. 10825–10836 (2018), http://papers.nips.cc/paper/8278-fast-and-effective-robustness-certification

  27. Singh, G., Gehr, T., Püschel, M., Vechev, M.T.: An abstract domain for certifying neural networks. Proc. ACM Program. Lang. 3(POPL), 41:1-41:30 (2019). https://doi.org/10.1145/3290354

    Article  Google Scholar 

  28. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev, M.T.: AI2: Safety and Robustness Certification of Neural Networks with Abstract Interpretation. In: 2018 IEEE Symposium on Security and Privacy, SP 2018, Proceedings, 21-23 May 2018, San Francisco, California, USA. pp. 3–18. IEEE Computer Society (2018). https://doi.org/10.1109/SP.2018.00058

  29. Goldberger, B., Katz, G., Adi, Y., Keshet, J.: Minimal Modifications of Deep Neural Networks Using Verification. In: Albert, E., Kovács, L. (eds.) LPAR 2020: 23rd International Conference on Logic for Programming, Artificial Intelligence and Reasoning, Alicante, Spain, May 22-27, 2020. EPiC Series in Computing, vol. 73, pp. 260–278. EasyChair (2020). https://doi.org/10.29007/699q

  30. Sotoudeh, M., Thakur, A.V.: Provable Repair of Deep Neural Networks. In: 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation (PLDI). ACM (2021)

  31. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic Attribution for Deep Networks. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017. Proceedings of Machine Learning Research, vol. 70, pp. 3319–3328. PMLR (2017), http://proceedings.mlr.press/v70/sundararajan17a.html

  32. Reinders, J.: Intel Threading Building Blocks: Outfitting C++ for Multi-Core Processor Parallelism. O’Reilly Media Inc, Sebastopol, California (2007)

    Google Scholar 

  33. Guennebaud, G., Jacob, B., et al.: Eigen v3. http://eigen.tuxfamily.org (2010)

  34. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: Wallach, H.M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada. pp. 8024–8035 (2019), http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library

  35. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (2017)

  36. Ziegler, G.M.: Lectures on Polytopes, vol. 152. Springer Science & Business Media, New York (2012)

    MATH  Google Scholar 

  37. Gläßle, T.: C++11 fourier motzkin elimination utilities. https://github.com/coldfix/cfme (2016)

  38. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2022), https://www.gurobi.com

  39. Jeannet, B., Miné, A.: Apron: A Library of Numerical Abstract Domains for Static Analysis. In: Bouajjani, A., Maler, O. (eds.) Computer Aided Verification, 21st International Conference, CAV 2009, Grenoble, France, June 26 - July 2, 2009. Proceedings. Lecture Notes in Computer Science, vol. 5643, pp. 661–667. Springer (2009). https://doi.org/10.1007/978-3-642-02658-4_52

  40. Fukuda, K., et al.: Frequently Asked Questions in Polyhedral Computation. ETH, Zurich, Switzerland (2004)

    Google Scholar 

  41. ETH robustness analyzer for neural networks (ERAN). https://github.com/eth-sri/eran (2019), Accessed: 2019-05-01

  42. ONNX: Open neural network exchange. https://onnx.ai/ (2020)

  43. Google: grpc: A high-performance, open source universal RPC framework. https://grpc.io/ (2020)

  44. Google: Protocol buffers - google’s data interchange format. https://developers.google.com/protocol-buffers/ (2020)

  45. Chollet, F., et al.: Keras. https://keras.io (2015)

  46. Katz, G., Barrett, C.W., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks. In: Majumdar, R., Kuncak, V. (eds.) Computer Aided Verification - 29th International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part I. Lecture Notes in Computer Science, vol. 10426, pp. 97–117. Springer (2017). https://doi.org/10.1007/978-3-319-63387-9_5

  47. Hendrycks, D., Zhao, K., Basart, S., Steinhardt, J., Song, D.: Natural Adversarial Examples. ar**v preprint ar**v:1907.07174 (2019)

  48. Mu, N., Gilmer, J.: MNIST-C: A robustness benchmark for computer vision. CoRR ar**v:1906.02337 (2019)

  49. **ang, W., Tran, H., Johnson, T.T.: Reachable set computation and safety verification for neural networks with relu activations. CoRR ar**v:1712.08163 (2017)

  50. Tran, H., Lopez, D.M., Musau, P., Yang, X., Nguyen, L.V., **ang, W., Johnson, T.T.: Star-Based Reachability Analysis of Deep Neural Networks. In: ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) Formal Methods - The Next 30 Years - Third World Congress, FM 2019, Porto, Portugal, October 7-11, 2019, Proceedings. Lecture Notes in Computer Science, vol. 11800, pp. 670–686. Springer (2019). https://doi.org/10.1007/978-3-030-30942-8_39

  51. Hanin, B., Rolnick, D.: Complexity of Linear Regions in Deep Networks. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA. Proceedings of Machine Learning Research, vol. 97, pp. 2596–2604. PMLR (2019), http://proceedings.mlr.press/v97/hanin19a.html

  52. Thrun, S.: Extracting Rules from Artifical Neural Networks with Distributed Representations. In: Tesauro, G., Touretzky, D.S., Leen, T.K. (eds.) Advances in Neural Information Processing Systems 7, [NIPS Conference, Denver, Colorado, USA, 1994]. pp. 505–512. MIT Press (1994)

  53. Bastani, O., Pu, Y., Solar-Lezama, A.: Verifiable Reinforcement Learning Via Policy Extraction. In: Bengio, S., Wallach, H.M., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada. pp. 2499–2509 (2018), http://papers.nips.cc/paper/7516-verifiable-reinforcement-learning-via-policy-extraction

  54. Breutel, S., Maire, F., Hayward, R.: Extracting Interface Assertions from Neural Networks in Polyhedral Format. In: ESANN 2003, 11th European Symposium on Artificial Neural Networks, Bruges, Belgium, April 23-25, 2003, Proceedings. pp. 463–468 (2003), https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2003-72.pdf

  55. Scheibler, K., Winterer, L., Wimmer, R., Becker, B.: Towards Verification of Artificial Neural Networks. In: Heinkel, U., Kriesten, D., Rößler, M. (eds.) Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen, MBMV 2015, Chemnitz, Germany, March 3-4, 2015. pp. 30–40. Sächsische Landesbibliothek (2015)

  56. Zhu, H., **ong, Z., Magill, S., Jagannathan, S.: An Inductive Synthesis Framework for Verifiable Reinforcement Learning. In: McKinley, K.S., Fisher, K. (eds.) Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019. pp. 686–701. ACM (2019). https://doi.org/10.1145/3314221.3314638

  57. Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A.V., Criminisi, A.: Measuring Neural Net Robustness With Constraints. In: Lee, D.D., Sugiyama, M., von Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain. pp. 2613–2621 (2016), http://papers.nips.cc/paper/6339-measuring-neural-net-robustness-with-constraints

  58. Ehlers, R.: Formal Verification of Piece-Wise Linear Feed-Forward Neural Networks. In: D’Souza, D., Kumar, K.N. (eds.) Automated Technology for Verification and Analysis - 15th International Symposium, ATVA 2017, Pune, India, October 3-6, 2017, Proceedings. Lecture Notes in Computer Science, vol. 10482, pp. 269–286. Springer (2017). https://doi.org/10.1007/978-3-319-68167-2_19

  59. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety Verification of Deep neural Networks. In: Majumdar, R., Kuncak, V. (eds.) Computer Aided Verification - 29th International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part I. Lecture Notes in Computer Science, vol. 10426, pp. 3–29. Springer (2017). https://doi.org/10.1007/978-3-319-63387-9_1

  60. Bunel, R., Turkaslan, I., Torr, P.H.S., Kohli, P., Mudigonda, P.K.: A Unified View of Piecewise Linear Neural Network Verification. In: Bengio, S., Wallach, H.M., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada. pp. 4795–4804 (2018), http://papers.nips.cc/paper/7728-a-unified-view-of-piecewise-linear-neural-network-verification

  61. Weng, T., Zhang, H., Chen, H., Song, Z., Hsieh, C., Daniel, L., Boning, D.S., Dhillon, I.S.: Towards Fast Computation of Certified Robustness for Relu Networks. In: Dy, J.G., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018. Proceedings of Machine Learning Research, vol. 80, pp. 5273–5282. PMLR (2018), http://proceedings.mlr.press/v80/weng18a.html

  62. Anderson, G., Pailoor, S., Dillig, I., Chaudhuri, S.: Optimization and Abstraction: a Synergistic Approach for Analyzing Neural Network Robustness. In: McKinley, K.S., Fisher, K. (eds.) Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019. pp. 731–744. ACM (2019). https://doi.org/10.1145/3314221.3314614

  63. **ang, W., Tran, H., Rosenfeld, J.A., Johnson, T.T.: Reachable Set Estimation and Safety Verification for Piecewise Linear Systems with Neural Network Controllers. In: 2018 Annual American Control Conference, ACC 2018, Milwaukee, WI, USA, June 27-29, 2018. pp. 1574–1579. IEEE (2018). https://doi.org/10.23919/ACC.2018.8431048

  64. Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Output Range Analysis for Deep Feedforward Neural Networks. In: Dutle, A., Muñoz, C.A., Narkawicz, A. (eds.) NASA Formal Methods - 10th International Symposium, NFM 2018, Newport News, VA, USA, April 17-19, 2018, Proceedings. Lecture Notes in Computer Science, vol. 10811, pp. 121–138. Springer (2018). https://doi.org/10.1007/978-3-319-77935-5_9

  65. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal Security Analysis of Neural Networks Using Symbolic Intervals. In: Enck, W., Felt, A.P. (eds.) 27th USENIX Security Symposium, USENIX Security 2018, Baltimore, MD, USA, August 15-17, 2018. pp. 1599–1614. USENIX Association (2018), https://www.usenix.org/conference/usenixsecurity18/presentation/wang-shiqi

  66. Yang, X., Johnson, T.T., Tran, H., Yamaguchi, T., Hoxha, B., Prokhorov, D.V.: Reachability Analysis of Deep Relu Neural Networks using Facet-Vertex Incidence. In: HSCC ’21: 24th ACM International Conference on Hybrid Systems: Computation and Control, Nashville, Tennessee, May 19-21, 2021. pp. 18:1–18:7. ACM (2021). https://doi.org/10.1145/3447928.3456650

  67. Mirman, M., Gehr, T., Vechev, M.T.: Differentiable Abstract Interpretation for Provably Robust Neural Networks. In: Dy, J.G., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018. Proceedings of Machine Learning Research, vol. 80, pp. 3575–3583. PMLR (2018), http://proceedings.mlr.press/v80/mirman18b.html

  68. Fischer, M., Balunovic, M., Drachsler-Cohen, D., Gehr, T., Zhang, C., Vechev, M.T.: DL2: Training and Querying Neural Networks with Logic. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA. Proceedings of Machine Learning Research, vol. 97, pp. 1931–1941. PMLR (2019), http://proceedings.mlr.press/v97/fischer19a.html

Download references

Acknowledgements

We thank the reviewers for their comments, which greatly improved the quality of the paper. Matthew Sotoudeh is supported by NSF grant DGE-1656518. This work is supported in part by NSF grant CCF-2048123 and DOE Award DE-SC0022285.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Sotoudeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sotoudeh, M., Tao, Z. & Thakur, A.V. SyReNN: A tool for analyzing deep neural networks. Int J Softw Tools Technol Transfer 25, 145–165 (2023). https://doi.org/10.1007/s10009-023-00695-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10009-023-00695-1

Keywords

Navigation