Log in

Fabrication of a porphyrin-based electrochemical biosensor for detection of nitric oxide released by cancer cells

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this report 5,10,15,20-tetrakis(4-methoxyphenyl)porphyrin (H2TMPP) has been used as electrode material for an easy and direct detection of NO in cancer cells using different electrochemical techniques. Cyclic voltammograms of H2TMPP-modified GCE in aqueous electrolyte showed oxidation peaks at 0.5 and 0.73 V and reduction peak at 0.64 V and a small peak at 0.4 V which are attributed to the redox processes of the system. The anodic and cathodic peak currents were proportional to the square root of the scan rate indicating a diffusion controlled mechanism. The H2TMPP-modified GC electrode exhibits a good stability after several circles. The fabricated electrode system was used to probe the concentration change of NO in HeLa cells using chronoamperometry. The NO sensor registered an amperometric current sensitivity of 0.0138 nA/μL with a linear correlation coefficient of 0.99571 in the presence of extracellular NO released upon activation of HeLa cells. Via confocal laser scanning microscopy, it has been demonstrated that H2TMPP could be used as a fluorescent indicator for cell imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Castillo J, Isik S, Blöchl A, Rodrigues NP, Bedioui F, Csöregi E, Schuhmann W, Oni J (2005) Simultaneous detection of the release of glutamate and nitric oxide from adherently growing cells using an array of glutamate and nitric oxide selective electrodes. Biosens Bioelectron 20:1559–1565

    Article  CAS  Google Scholar 

  2. Rodrigues NP, Bedioui F, Deutsch A, Zurgil N, Afrimzon E, Shafran Y, Deutsch M (2006) Construction and use of an integrated electrochemical device for the detection of biologically relevant compounds released from non-adherent cells: Application for the electrochemical determination of nitric oxide produced by human U937 cells. Electrochem Commun 8:341–347

    Article  CAS  Google Scholar 

  3. Ignarro LJ (ed) (2000) Nitric oxide biology and pathology. Academic, San Diego, Reviews

    Google Scholar 

  4. Lancaster J (ed) (1996) Nitric oxide principles and actions. Academic Press, San Diego

    Google Scholar 

  5. Griveau S, Dumézy C, Séguin J, Chabot GG, Scheman D, Bedioui F (2007) In vivo electrochemical detection of nitric oxide in tumor-bearing mice. Anal Chem 79:1030–1033

    Article  CAS  Google Scholar 

  6. Bedioui F, Villeneuve N (2003) Electrochemical nitric oxide sensors for biological samples-Principle, selected examples and applications. Electroanalysis 15:5–18

    Article  CAS  Google Scholar 

  7. Li C-Z, Alwarappan S, Zhang W, Scafa N, Zhang X (2009) Metallo protoporphyrin functionalized microelectrodes for electrocatalytic sensing of nitric oxide. Amer J Biomed Sci 1:274–282

    Article  Google Scholar 

  8. Wang S, Lin X (2005) Electrodeposition of Pt-Fe(III) nanoparticle on glassy carbon electrode for electrochemical nitric oxide sensor. Electrochim Acta 50:2887–2891

    Article  CAS  Google Scholar 

  9. Wartelle C, Schuhmann W, Blöchl A, Bedioui F (2005) Integrated compact biocompatible hydrogel-based amperometric sensing device for easy screening of drugs involved in nitric oxide production by adherent cultured cells. Electrochim Acta 50:4988–4994

    Article  CAS  Google Scholar 

  10. Pontié M, Gobin C, Pauporté T, Bedioui F, Devynck J (2000) Electrochemical nitric oxide microsensors: Sensitivity and selectivity characterization. Anal Chim Acta 411:175–185

    Article  Google Scholar 

  11. Peng YF, Hu CH, Zheng DY, Hu SS (2008) A sensitive nitric oxide microsensor based on PBPB composite film modified carbon fiber microelectrode. Sens Actuat B: Chem 133:571–576

    Article  CAS  Google Scholar 

  12. Chen X, **e P, Tian Q, Hu S (2006) Amperometric nitric oxide sensor based on poly(thionine)/nafion-modified electrode and its application in monitoring nitric oxide release from rat kidney. Anal Lett 39:1321–1332

    Article  CAS  Google Scholar 

  13. Biesaga M, Pyrzynska K, Trojanowicz M (2000) Porphyrins in analytical chemistry—a review. Talanta 51:209–224

    Article  CAS  Google Scholar 

  14. Temelli B, Unaleroglu C (2009) Synthesis of meso-teraphenyl porphyrins via condensation of dipyrromethanes with N-tosyl imines. Tetrahedron 65:2043–2050

    Article  CAS  Google Scholar 

  15. Tanaka M, Hayashi S, Eu S, Umeyama T, Matano Y, Imahori H (2007) Novel unsymmetrically π-elongated porphyrin for dye-sensitized TiO2 cells. Chem Commun 2069–2071

  16. Mozer AJ, Griffith MJ, Tsekouras G, Wagner P, Wallace GG, Mori S, Sunahara K, Miyashita M, Earles JC, Gordon KC, Du L, Katoh R, Furube A, Officer DL (2009) Zn-Zn porphyrin dimer-sensitized solar cells: Toward 3-D light harvesting. J Am Chem Soc 131:15621–15623

    Article  CAS  Google Scholar 

  17. Rochford J, Chu D, Hagfeldt A, Galoppini E (2007) Tetrachelate porphyrin chromophores for metal oxide semiconductor sensitization: Effect of the spacer length and anchoring group position. J Am Chem Soc 129:4655–4665

    Article  CAS  Google Scholar 

  18. Ogawa K, Zhang T, Yoshihara K, Kobuke Y (2002) Large third-order optical nonlinearity of self-assembled porphyrin oligomers. J Am Chem Soc 124:22–23

    Article  CAS  Google Scholar 

  19. Screen TEO, Thorne JRG, Denning RG, Bucknall DG, Anderson HL (2002) Amplified optical nonlinearity in a self-assembled double-strand conjugated porphyrin polymer ladder. J Am Chem Soc 124:9712–9713

    Article  CAS  Google Scholar 

  20. Fukuzumi S, Imahori H, Yamada H, El-Khouly ME, Fujitsuka M, Ito O, Guldi DM (2001) Catalytic effects of dioxygen on intramolecular electron transfer in radical ion pairs of zinc porphyrin-linked fullerenes. J Am Chem Soc 123:2571–2575

    Article  CAS  Google Scholar 

  21. Kang Y, Kampf JW, Meyerhoff ME (2007) Optical fluoride sensor based on monomer-dimer equilibrium of scandium(III)-octaethylporphyrin in a plasticized polymeric film. Anal Chim Acta 598:295–303

    Article  CAS  Google Scholar 

  22. Vlasici D, Pruneanu S, Olenic L, Pogacean F, Ostafe V, Chiriac V, Pica EM, Bolundut LC, Nica L, Fagadar-Cosma E (2010) Manganese(III) porphyrin-based potentiometric sensors for diclofenac assay in pharmaceutical preparations. Sensors 10:8850–8864

    Article  Google Scholar 

  23. Macdonald IJ, Dougherty TJ (2001) Basic principles of photodynamic therapy. J Porphyrins Phthalocyanines 5:105–129

    Article  CAS  Google Scholar 

  24. Banfi S, Caruso E, Caprioli S, Mazzagatti L, Canti G, Ravizza R, Gariboldi M, Monti E (2004) Photodynamic effects of porphyrin and chlorin photosensitizers in human colon adenocarcinoma cells. Bioorg Med Chem 12:4853–4860

    Article  CAS  Google Scholar 

  25. Dudkowiak A, Teslak E, Habdas J (2006) Photophysical studies of tetratolylporphyrin photosensitizers for potential medical applications. J Mol Struct 792–793:93–98

    Article  Google Scholar 

  26. Josefsen LB, Boyle RW (2008) Photodynamic therapy: novel third-generation photosensitizers one step closer? British J Pharma 154:1–3

    Article  CAS  Google Scholar 

  27. Ryabova V, Schulte A, Erichsen T, Schuhmann W (2005) Robotic sequential analysis of library of metalloporphyrins as electrocatalysts for voltammetric nitric oxide sensors. Analyst 130:1245–1252

    Article  CAS  Google Scholar 

  28. Diab N, Oni J, Schulte A, Radtke I, Blöchl A, Schuhmann W (2003) Pyrrole functionalised metalloporphyrins as electrocatalysts for oxidation of nitric oxide. Talanta 61:43–51

    Article  CAS  Google Scholar 

  29. Diab N, Schuhmann W (2001) Electropolymerized manganese porphyrin/polypyrrole films as catalytic surfaces for the oxidation of nitric oxide. Electrochim Acta 47:265–273

    Article  CAS  Google Scholar 

  30. Bedioui F, Trevin S, Albin V, Villegas MGG, Devynck J (1997) Design and characterization of chemically modified electrodes with iron(III) porphyrinic-based polymers: Study of their reactivity toward nitrites and nitric oxide in aqueous solution. Anal Chim Acta 341:177–185

    Article  CAS  Google Scholar 

  31. Malinski T, Taha Z (1992) Nitric oxide release from a single cell measured in situ by a porphyrinic-based microsensor. Nature 358:676–678

    Article  CAS  Google Scholar 

  32. Gottlieb HE, Kotlyar V, Nudelman A (1997) NMR chemical shifts of common laboratory solvents as trace impurities. J Org Chem 62:7512–7515

    Article  CAS  Google Scholar 

  33. Gritzner G, Kuta J (1984) Recommendations on reporting electrode potentials in nonaqueous solvents. J Pure Appl Chem 56:461–466

    Article  Google Scholar 

  34. Ruiz Aranzaes J, Daniel M-C, Astruc D (2006) Metallocenes as references for the determination of redox potentials by cyclic voltammetry permethylated iron and cobalt sandwich complexes, inhibition by polyamine dendrimers and the role of hydroxy-containing ferrocenes. Can J Chem 84:288–299

    Article  CAS  Google Scholar 

  35. Nafady A, Geiger WE (2008) Characterization of the successive one-electron oxidation products of the dicobalt fulvalenediyl (Fv) compound Co2Fv(CO)4 and its phosphine-substituted product. Organometallics 27:5624–5631

    Article  CAS  Google Scholar 

  36. Degl’Innocenti D, Marzocchini R, Rosati F, Cellini E, Raugei G, Ramponi G (1999) Acylphosphatase expression during macrophage differentiation and activation of U-937 cell line. Biochimie 81:1031–1035

    Article  Google Scholar 

  37. Adler AD, Longo FR, Finarelli JD (1967) A simplified synthesis for meso-tetraphenylporphyrins. J Org Chem 32:476–477

    Article  CAS  Google Scholar 

  38. LeSuer RJ, Buttolph C, Geiger WE (2004) Comparison of the conductivity properties of the tetrabutylammonium salt of tetrakis(pentafluorophenyl)borate anion with those of traditional supporting electrolyte anions in nonaqueous solvents. Anal Chem 76:6395–6401

    Article  CAS  Google Scholar 

  39. Barrière F, Geiger WE (2006) Use of weakly coordinating anions to develop an integrated approach to the tuning of ΔE 1/2 values by medium effects. J Am Chem Soc 128:3980–3989

    Article  Google Scholar 

  40. Gericke HJ, Barnard NI, Erasmus E, Swarts JC, Cook MJ, Aquino MAS (2010) Solvent and electrolyte effects in enhancing the identification of intramolecular electronic communication in a multi redox-active diruthenium tetraferrocenoate complex, a triple-sandwiched dicadmium phthalocyanine and a ruthenocenecontaining β-diketone. Inorg Chim Acta 363:2222–2232

    Article  CAS  Google Scholar 

  41. Nemykin VN, Rohde GT, Barrett CD, Hadt RG, Sabin JR, Reina G, Galloni P, Floris B (2010) Long-range electronic communication in free-base meso-poly(ferrocenyl)-containing porphyrins. Inorg Chem 49:7497–7509

    Article  CAS  Google Scholar 

  42. Hildebrandt A, Schaarschmidt D, Lang H (2011) Electronically intercommunicating iron centers in di- and tetraferrocenyl pyrroles. Organometallics 30:556–563

    Article  CAS  Google Scholar 

  43. Hildebrandt A, Schaarschmidt D, Claus R, Lang H (2011) Influence of electron delocalization in heterocyclic core systems on the electrochemical communication in 2,5-Di- and 2,3,4,5-Tetraferrocenyl thiophenes, furans, and pyrroles. Inorg Chem 50:10623–10632

    Article  CAS  Google Scholar 

  44. Miesel D, Hildebrandt A, Korb M, Low PJ, Lang H (2013) Synthesis and (spectro)electrochemical behavior of 2,5-diferrocenyl-1-phenyl‑1H‑phosphole. Organometallics 32:2993–3002

    Article  CAS  Google Scholar 

  45. Speck JM, Claus R, Hildebrandt A, Rüffer T, Erasmus E, van As L, Swarts JC, Lang H (2012) Electron transfer studies on ferrocenylthiophenes: Synthesis, properties, and electrochemistry. Organometallics 31:6373–6380

    Article  CAS  Google Scholar 

  46. Pfaff U, Hildebrandt A, Schaarschmidt D, Hahn T, Liebing S, Kortus J, Lang H (2012) Di- and triferrocenyl (hetero)aromatics: Synthesis, characterization, (spectro-)electrochemistry, and calculations. Organometallics 31:6761–6771

    Article  CAS  Google Scholar 

  47. Hildebrandt A, Lang H (2011) Influencing the electronic interaction in diferrocenyl-1-phenyl-1H-pyrroles. Dalton Trans 40:11831–11837

    Article  CAS  Google Scholar 

  48. Ni Y, Zhang X, Kokot S (2009) Spectrometric and voltammetric studies of the interaction between quercetin and bovine serum albumin using warfarin as site marker with the aid of chemometrices. Spectrochim Acta A 71:1865–1872

    Article  Google Scholar 

  49. Feng L, Wu L, Wang J, Ren J, Miyoshi D, Sugimoto N, Qu X (2012) Detection of a prognostic indicator in early stage cancer using functionalized graphene based peptide sensor. Adv Mater 24:125–131

    Article  CAS  Google Scholar 

  50. Wadsworth R, Stankevicius E, Simonsen U (2006) Physiologically relevant measurements of nitric oxide in cardiovascular research using electrochemical microsensors. J Vascular Res 43:70–85

    Article  CAS  Google Scholar 

  51. Thomsen LL, Miles DW, Happerfield L, Bobrow LG, Knowles RG, Moncada S (1995) Nitric oxide synthase activity in human breast cancer. British J Cancer 72:41–44

    Article  CAS  Google Scholar 

  52. Thomsen LL, Lawton FG, Knowles RG, Beesley JE, Moreno V-T, Moncada S (1994) Nitric oxide synthase activity in human gynecological cancer. Cancer Res 54:1352–1354

    CAS  Google Scholar 

  53. Lala PK, Chakraborty C (2001) Role of nitric oxide in carcinogenesis and tumor progression. Lancet Oncol 3:149–156

    Article  Google Scholar 

  54. Trouillon R, Cheung C, Patil BA, O’Hare D (2010) Electrochemical study of the intracellular transduction of vascular endothelial growth factor induced nitric oxide synthase activity using a multi-channel biocompatible microelectrode array. Biochim Biophys Acta 1800:929–936

    Article  CAS  Google Scholar 

  55. Koh WCA, Chandra P, Kim D-M, Shim Y-B (2011) Electropolymerized self-assembled layer on gold nanoparticles: Detection of inducible nitric oxide synthase in neuronal cell culture. Anal Chem 83:6177–6183

    Article  CAS  Google Scholar 

  56. Pailleret A, Oni J, Reiter S, Isik S, Etienne M, Bedioui F, Schuhmann W (2003) Scanning electrochemical microscopy assisted positioning of NO-specific amperometric sensors above human umbilical vein endothelial cells for the electrochemical detection of nitric oxide release. Electrochem Commun 5:847–852

    Article  CAS  Google Scholar 

  57. Kikugawa K, Oikawa N, Miyazawa A, Shindo K, Kato T (2005) Interaction of nitric oxide with glutathione or cysteine generates reactive oxygen species causing DNA single strand breaks. Bio Pharma Bull 28:998–1003

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Deutsche Forschungsgemeinschaft DFG (Research Unit 1154 “Towards Molecular Spintronics“) and the Fonds der Chemischen Industrie (FCI) for generous financial support. SC thanks Alexander von Humboldt foundation and Department of Science and Technology, Government of India for providing Humboldt Fellowship and Women scientist award, respectively.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sudeshna Chandra, Dhirendra Bahadur or Heinrich Lang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandra, S., Mende, C., Bahadur, D. et al. Fabrication of a porphyrin-based electrochemical biosensor for detection of nitric oxide released by cancer cells. J Solid State Electrochem 19, 169–177 (2015). https://doi.org/10.1007/s10008-014-2583-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2583-z

Keywords

Navigation