Log in

Carbon-dot wrapped ZnO nanoparticle-based photoelectrochemical sensor for selective monitoring of H2O2 released from cancer cells

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

This study reports on a simple approach for the fabrication of an electrode modified with biocompatible C-dot wrapped ZnO nanoparticles for selective photoelectrochemical monitoring of H2O2 released from living cells. The biocompatibility of the ZnO nanoparticles was confirmed through in-vitro cellular testing using the MTT assay on Huh7 cell lines. The ZnO nanoparticles wrapped with dopamine-derived C-dots possess numerous catalytically active sites, excessive surface defects, good electrical conductivity, and efficient separation ability of photo-induced electrons and holes. These properties offer highly sensitive and selective non-enzymatic photo-electrochemical monitoring of H2O2 released from HeLa cells after stimulation with N-formylmethionyl-leucyl-phenylalanine. The sensor has a wide linear range (20–800 nM), low detection limit (2.4 nM), and reliable reproducibility, this implying its suitability for biological and biomedical applications.

Schematic of the fabrication of ZnO nanoparticles by using a plant extract as a reducing agent. Wrap** of ZnO with C-dots enhances the photoelectrocatalytic efficacy. Sensitive and selective photoelectrochemical monitoring of H2O2 released from cancer cells is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Scheme 2
Fig. 3

Similar content being viewed by others

References

  1. López ML, Uribe-Cruz C, Osvaldt A, Kieling CO, Simon L, Tobar S, Andrades M, Matte U (2016) Encapsulated platelets modulate kupffer cell activation and reduce oxidative stress in a model of acute liver failure. Liver Transpl 22(11):1562–1572

    Article  Google Scholar 

  2. Córdova A, Sureda A, Albina ML, Linares V, Bellés M, Sánchez DJ (2015) Oxidative stress markers after a race in professional cyclists. Int J Sport Nutr Exerc Metab 25(2):171–178

    Article  Google Scholar 

  3. Grisham MB (2013) Methods to detect hydrogen peroxide in living cells: possibilities and pitfalls. Comp Biochem Physiol A Mol Integr Physiol 165(4):429–438

    Article  CAS  Google Scholar 

  4. Nogueira RFP, Oliveira MC, Paterlini WC (2005) Simple and fast spectrophotometric determination of H2O2 in photo-Fenton reactions using metavanadate. Talanta 66(1):86–91

    Article  CAS  Google Scholar 

  5. Reichert J, McNeight S, Rudel H (1939) Determination of hydrogen peroxide and some related peroxygen compounds. Ind Eng Chem Anal Ed 11(4):194–197

    Article  CAS  Google Scholar 

  6. Gomes A, Fernandes E, Lima JL (2005) Fluorescence probes used for detection of reactive oxygen species. J Biochem Biophys Methods 65(2–3):45–80

    Article  CAS  Google Scholar 

  7. Lyu Y-P, Wu Y-S, Wang T-P, Lee C-L, Chung M-Y, Lo C-T (2018) Hydrothermal and plasma nitrided electrospun carbon nanofibers for amperometric sensing of hydrogen peroxide. Microchim Acta 185(8):371

    Article  Google Scholar 

  8. Zhao S, Zhang J, Li Z, Zhang P, Li Y, Liu G, Wang Y, Yue Z (2017) Photoelectrochemical determination of hydrogen peroxide using a gold electrode modified with fluorescent gold nanoclusters and graphene oxide. Microchim Acta 184(3):677–686

    Article  CAS  Google Scholar 

  9. Su Y, Zhou X, Long Y, Li W (2018) Immobilization of horseradish peroxidase on amino-functionalized carbon dots for the sensitive detection of hydrogen peroxide. Microchim Acta 185(2):114

    Article  Google Scholar 

  10. Liu J, Yang C, Shang Y, Zhang P, Liu J, Zheng J (2018) Preparation of a nanocomposite material consisting of cuprous oxide, polyaniline and reduced graphene oxide, and its application to the electrochemical determination of hydrogen peroxide. Microchim Acta 185(3):172

    Article  Google Scholar 

  11. Zhang Y, Huang B, Yu F, Yuan Q, Gu M, Ji J, Zhang Y, Li Y (2018) 3D nitrogen-doped graphite foam@ Prussian blue: an electrochemical sensing platform for highly sensitive determination of H2O2 and glucose. Microchim Acta 185(2):86

    Article  Google Scholar 

  12. Akhtar N, El-Safty SA, Khairy M, El-Said WA (2015) Fabrication of a highly selective nonenzymatic amperometric sensor for hydrogen peroxide based on nickel foam/cytochrome c modified electrode. Sensors Actuators B Chem 207:158–166

    Article  CAS  Google Scholar 

  13. Li H, Hao W, Hu J, Wu H (2013) A photoelectrochemical sensor based on nickel hydroxyl-oxide modified n-silicon electrode for hydrogen peroxide detection in an alkaline solution. Biosens Bioelectron 47:225–230

    Article  CAS  Google Scholar 

  14. Amanulla B, Palanisamy S, Chen S-M, Velusamy V, Chiu T-W, Chen T-W, Ramaraj SK (2017) A non-enzymatic amperometric hydrogen peroxide sensor based on iron nanoparticles decorated reduced graphene oxide nanocomposite. J Colloid Interface Sci 487:370–377

    Article  CAS  Google Scholar 

  15. Hussain I, Singh N, Singh A, Singh H, Singh S (2016) Green synthesis of nanoparticles and its potential application. Biotechnol Lett 38(4):545–560

    Article  CAS  Google Scholar 

  16. Liu R, Mahurin SM, Li C, Unocic RR, Idrobo JC, Gao H, Pennycook SJ, Dai S (2011) Dopamine as a carbon source: the controlled synthesis of hollow carbon spheres and yolk-structured carbon nanocomposites. Angew Chem 50(30):6799–6802

    Article  CAS  Google Scholar 

  17. Khan F, Hashmi MU, Khalid N, Hayat MQ, Ikram A, Janjua HA (2016) Controlled assembly of silver nano-fluid in Heliotropium crispum extract: a potent anti-biofilm and bactericidal formulation. Appl Surf Sci 387:317–331

    Article  CAS  Google Scholar 

  18. Akhtar N, El-Safty SA, Abdelsalam ME, Kawarada H (2015) One-pot fabrication of dendritic NiO@ carbon–nitrogen dot electrodes for screening blood glucose level in diabetes. Adv Healthc Mater 4(14):2110–2119

    Article  CAS  Google Scholar 

  19. Sundrarajan M, Ambika S, Bharathi K (2015) Plant-extract mediated synthesis of ZnO nanoparticles using Pongamia pinnata and their activity against pathogenic bacteria. Adv Powder Technol 26(5):1294–1299

    Article  CAS  Google Scholar 

  20. Fu L, Fu Z (2015) Plectranthus amboinicus leaf extract–assisted biosynthesis of ZnO nanoparticles and their photocatalytic activity. Ceram Int 41(2):2492–2496

    Article  CAS  Google Scholar 

  21. Barman MK, Mitra P, Bera R, Das S, Pramanik A, Parta A (2017) An efficient charge separation and photocurrent generation in the carbon dot–zinc oxide nanoparticle composite. Nanoscale 9(20):6791–6799

    Article  CAS  Google Scholar 

  22. Bauermann LP, Bill J, Aldinger F (2006) Bio-friendly synthesis of ZnO nanoparticles in aqueous solution at near-neutral pH and low temperature. J Phys Chem B 110(11):5182–5185

    Article  CAS  Google Scholar 

  23. Warkocki W, El-Safty SA, Shenashen MA, Elshehy E, Yamaguchi H, Akhtar N (2015) Photo-induced recovery, optical detection, and separation of noxious SeO 3 2− using a mesoporous nanotube hybrid membrane. J Mater Chem A 3(34):17578–17589

    Article  CAS  Google Scholar 

  24. Chi P-W, Su C-W, Wei D-H (2017) Internal stress induced natural self-chemisorption of ZnO nanostructured films. Sci Rep 7:43281

    Article  Google Scholar 

  25. Wang C, Hu X, Gao Y, Ji Y (2015) ZnO nanoparticles treatment induces apoptosis by increasing intracellular ROS levels in LTEP-a-2 cells. Biomed Res Int 2015

  26. Akhtar MJ, Alhadlaq HA, Alshamsan A, Khan MM, Ahamed M (2015) Aluminum do** tunes band gap energy level as well as oxidative stress-mediated cytotoxicity of ZnO nanoparticles in MCF-7 cells. Sci Rep 5:13876

    Article  Google Scholar 

  27. Yin H, Casey PS, McCall MJ, Fenech M (2010) Effects of surface chemistry on cytotoxicity, genotoxicity, and the generation of reactive oxygen species induced by ZnO nanoparticles. Langmuir 26(19):15399–15408

    Article  CAS  Google Scholar 

  28. Batra N, Tomar M, Gupta V (2012) Realization of an efficient cholesterol biosensor using ZnO nanostructured thin film. Analyst 137(24):5854–5859

    Article  CAS  Google Scholar 

  29. Kim W, Son Y, Pawar A, Kang M, Zheng J, Sharma V, Mohanty P, Kang Y (2015) Facile fabrication and photoelectrochemical properties of a one axis-oriented NiO thin film with a (111) dominant facet. J Mater Chem A 3:447–447

    Article  CAS  Google Scholar 

  30. Yue Z, Lisdat F, Parak WJ, Hickey SG, Tu L, Sabir N, Dorfs D, Bigall NC (2013) Quantum-dot-based photoelectrochemical sensors for chemical and biological detection. ACS Appl Mater Interfaces 5(8):2800–2814

    Article  CAS  Google Scholar 

  31. Zhang J, Tu L, Zhao S, Liu G, Wang Y, Wang Y, Yue Z (2015) Fluorescent gold nanoclusters based photoelectrochemical sensors for detection of H2O2 and glucose. Biosens Bioelectron 67:296–302

    Article  CAS  Google Scholar 

  32. Zhang R, Jiang C, Fan X, Yang R, Sun Y, Zhang C (2018) A gold electrode modified with a nanoparticulate film composed of a conducting copolymer for ultrasensitive voltammetric sensing of hydrogen peroxide. Microchim Acta 185(1):58

    Article  Google Scholar 

  33. Li Z, **n Y, Zhang Z (2015) New photocathodic analysis platform with quasi-core/shell-structured TiO2@Cu2O for sensitive detection of H2O2 release from living cells. Anal Chem 87(20):10491–10497

    Article  CAS  Google Scholar 

  34. Li Z, **n Y, Wu W, Fu B, Zhang Z (2016) Topotactic conversion of copper (I) phosphide nanowires for sensitive electrochemical detection of H2O2 release from living cells. Anal Chem 88(15):7724–7729

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Naeem Akhtar, Minghui Yang or Hussnain Ahmed Janjua.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 965 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, F., Akhtar, N., Jalal, N. et al. Carbon-dot wrapped ZnO nanoparticle-based photoelectrochemical sensor for selective monitoring of H2O2 released from cancer cells. Microchim Acta 186, 127 (2019). https://doi.org/10.1007/s00604-019-3227-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3227-x

Keywords

Navigation