Log in

Targeted molecular dynamics (TMD) of the full-length KcsA potassium channel: on the role of the cytoplasmic domain in the opening process

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Some recent papers clearly indicate that the cytoplasmic domain of KcsA plays a role in pH sensing. We have performed, for the first time, a targeted molecular dynamics (TMD) simulation of the opening of full-length KcsA at pH 4 and pH 7, with a special interest for the cytoplasmic domain. Association energy calculations show a stabilization at pH 7 confirming that the protonation of some amino-acids at pH 4 in this domain plays a role in the opening process. A careful analysis of the pH dependent charges borne by residues in the cytoplasmic domain and their interactions confirms some literature experimental data and permits to give further insight into the role played by some of them in the opening process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Except for the full systems simulations where residues 113 and 114 were not restrained since they are located at the border between TM and cytoplasmic domains.

  2. The global bending of the cytoplasmic domain was defined by the angle between the mass-weighted backbone atoms of residues Val48, Ala111 and Asp120 of the four units.

References

  1. Hille B (2003) Ion channels of excitable membranes, 3rd edn. Sinauer, Sunderland, MA

    Google Scholar 

  2. Alagem N, Yesylevskyy S, Reuveny E (2003) The pore helix is involved in stabilizing the open state of inwardly rectifying K + channels. Biophys J 85:300–312

    Article  CAS  Google Scholar 

  3. Krol E, Trebacz K (2000) Ways of ion channel gating in plant cells. Ann Bot 86:449–469

    Article  CAS  Google Scholar 

  4. Cuello LG, Cortes DM, Jogini V, Sompornpisut A, Perozo E (2010) A molecular mechanism for proton-dependent gating in KCSA. FEBS Lett 584:1126–1132

    Article  CAS  Google Scholar 

  5. Salkoff L, Wei AD, Baban B, Butler A, Fawcett G, Ferreira G, Santi CM (2005) The C. elegans research community, WormBook, doi:10.1895/wormbook.1.42.1

  6. Uysal S, Vasquez V, Terechko V, Esaki K, Koide S, Fellouse FA, Sidhu SS, Perozo E, Kossiakoff A (2009) The crystal structure of full-length KcsA in its closed conformation. Proc Natl Acad Sci USA 106:6644–6649

    Article  CAS  Google Scholar 

  7. Cuello LG, Romero JG, Cortes DM, Perozo E (1998) pH-dependent gating in the Streptomyces lividans K channel. Biochemistry 37:3229–3236

    Article  CAS  Google Scholar 

  8. Heginbotham L, LeMasurier M, Kolmakova-Partensky L, Miller C (1999) Single streptomyces lividans K + channels: functional asymmetries and sidedness of proton activation. J Gen Physiol 114:551–560

    Article  CAS  Google Scholar 

  9. Schrempf H, Schmidt O, Kümmerlen R, Hinnah S, Müller D, Betzler M, Steinkamp T, Wagner R (1995) A prokaryotic potassium ion channel with two predicted transmembrane segments from Streptomyces lividans. EMBO J 14:5170–5178

    CAS  Google Scholar 

  10. Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K + conduction and selectivity. Science 280:69–77

    Article  CAS  Google Scholar 

  11. Zhou Y, Morais-Cabral JH, Kaufman A, MacKinnon R (2001) Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 Å resolution. Nature 414:43–48

    Article  CAS  Google Scholar 

  12. Pau VP, Zhu Y, Yuchi Z, Hoang QQ, Yang DS (2007) Characterization of the C-terminal domain of a potassium channel from Streptomyces lividans (KcsA). J Biol Chem 282:29163–29169

    Article  CAS  Google Scholar 

  13. Cortes DM, Cuello LG, Perozo E (2001) Molecular architecture of full-length KcsA: role of cytoplasmic domains in ion permeation and activation gating. J Gen Physiol 117:165–180

    Article  CAS  Google Scholar 

  14. Perozo E, Cortes DM, Cuello LG (1999) Structural rearrangements underlying K1-channel activation gating. Science 285:73–78

    Article  CAS  Google Scholar 

  15. Liu YS, Sompornpisut P, Perozo E (2001) Structure of the KcsA channel intracellular gate in the open state. Nat Struct Biol 8:883–887

    Article  CAS  Google Scholar 

  16. Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT, MacKinnon R (2002) The open pore conformation of potassium channels. Nature 417:523–526

    Article  CAS  Google Scholar 

  17. Thompson AN, Posson DJ, Parsa PV, Nimigean CM (2008) Molecular mechanism of pH sensing in KcsA potassium channels. Proc Natl Acad Sci USA 105:6900–6905

    Article  CAS  Google Scholar 

  18. Takeuchi K, Takahashi H, Kawano S, Shimada I (2007) Identification and characterization of the slowly exchanging pH-dependent conformational rearrangement in KcsA. J Biol Chem 282:15179–15186

    Article  CAS  Google Scholar 

  19. Shen Y, Kong Y, Ma J (2002) Intrinsic flexibility and gating mechanism of the potassium channel KcsA. Proc Natl Acad Sci USA 99:1949–1953

    Article  CAS  Google Scholar 

  20. Hirano M, Takeuchi Y, Aoki T, Yanagida T, Ide T (2010) Rearrangements in the KcsA cytoplasmic domain underlie its gating. J Biol Chem 285:3777–3783

    Article  CAS  Google Scholar 

  21. Uysal S, Cuello LG, Cortes DM, Koide S, Kossiakoff AA, Perozo E (2011) Mechanism of activation gating in the full-length KcsA K + channel. Proc Natl Acad Sci USA 108:11896–11899

    Article  CAS  Google Scholar 

  22. Zhong W, Guo W (2009) Mixed modes in opening of KcsA potassium channel from a targeted molecular dynamics simulation. Biochem Biophys Res Comm 388:86–90

    Article  CAS  Google Scholar 

  23. Compoint M, Picaud F, Ramseyer C, Girardet C (2005) Zip gating of the KcsA channel studied by targeted molecular dynamics. Chem Phys Lett 407:199–204

    Article  CAS  Google Scholar 

  24. Compoint M, Picaud F, Ramseyer C, Girardet C (2005) Targeted molecular dynamics of an open-state KcsA channel. J Chem Phys 122:134707–134714

    Article  Google Scholar 

  25. Zhong W, Guo W, Ma S (2008) Intrinsic aqueduct orifices facilitate K + channel gating. FEBS Lett 582:3320–3324

    Article  CAS  Google Scholar 

  26. Holyoake J, Domene C, Bright JN, Sansom MS (2004) KcsA closed and open: modelling and simulation studies. Eur Biophys J 33:238–246

    Article  CAS  Google Scholar 

  27. Cuello LG, Jogini V, Cortes DM, Perozo E (2010) Structural mechanism of C-type inactivation in K+ channels. Nature 466:203–208

    Article  CAS  Google Scholar 

  28. Compoint M, Carloni P, Ramseyer C, Girardet C (2004) Molecular dynamics study of the KcsA channel at 2.0 Å resolution: Stability and concerted motions within the pore. Biochim Biophys.Acta, 1661:26–39

    Article  CAS  Google Scholar 

  29. Morais-Cabral JH, Zhou Y, MacKinnon R (2001) Energetic optimization of ion conduction rate by the K + selectivity filter. Nature 414:37–42

    Article  CAS  Google Scholar 

  30. Raja M (2010) The role of extramembranous cytoplasmic termini in assembly and stability of the tetrameric K(+)-channel KcsA. J Membrane Biol 235:51–61

    Article  CAS  Google Scholar 

  31. Heginbotham L, Odessey E, Miller C (1997) Tetrameric stoichiometry of a prokaryotic K + channel. Biochemistry 36:10335–10342

    Article  CAS  Google Scholar 

  32. Meuser D, Splitt H, Wagner R, Schrempf H (1999) Exploring the open pore of the potassium channel from Streptomyces lividans. FEBS Lett 462:447–452

    Article  CAS  Google Scholar 

  33. Hirano M, Onishi Y, Yanagida T, Ide T (2011) Role of the KcsA channel cytoplasmic domain in pH-dependent gating. Biophys J 101:2157–2162

    Article  CAS  Google Scholar 

  34. Cuello LG, Jogini V, Cortes DM, Sompornpisut A, Purdy MD, Wiener MC, Perozo E (2010) Design and characterization of a constitutively open KcsA. FEBS Lett 584:1133–1138

    Article  CAS  Google Scholar 

  35. Cuello LG, Jogini V, Cortes DM, Pan AC, Gagnon DG, Dalmas O, Cordero-Morales JF, Chakrapani S, Roux B, Perozo E (2010) Structural basis for the coupling between activation and inactivation gates in K(+) channels. Nature 466:272–275

    Article  CAS  Google Scholar 

  36. Kharkyanen VN, Yesylevskyy SO, Berezetskaya NM, Boiteux C, Ramseyer C (2009) Semi-quantitative model of the gating of KcsA ion channel. 2. Dynamic self-organization model of the gating Biopolym. Cell 25:476–483

    CAS  Google Scholar 

  37. Andersen HC (1980) Molecular dynamics at constant pressure and/or temperature. J Chem Phys 72:2384–2393

    Article  CAS  Google Scholar 

  38. Gordon JC, Myers JB, Folta T, Shoja V, Heath LS, Onufriev A (2005) H++: a server for estimating pKas and adding missing hydrogens to macromolecules. Nucleic Acids Res 33:W368–W371

    Article  CAS  Google Scholar 

  39. Schlitter I, Engels M, Krüger P (1994) Targeted molecular dynamics: a new approach for searching pathways of conformational transition. J Mol Graphics 12:84–89

    Article  CAS  Google Scholar 

  40. Karplus M, Kuriyan J (2005) Molecular dynamics and protein function. Proc Natl Acad Sci USA 102:6679–6685

    Article  CAS  Google Scholar 

  41. Case D, Darden T, Cheatham TE, Simmerling C, Wang J, Duke, Luo R, Crowley M, Walker R, Zhang W, Merz K, Wang B, Hayik S, Roitberg A, Seabra G, Kolossvary I, Wong K, Paesani F, Vanicek J, Wu X, Brozell S, Steinbrecher T, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Gui G, Mathews D, Seetin M, Sagui C, Babin V, Kollman P (2010) AMBER 11, University of California, San Francisco

  42. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of N-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  43. Kottalam J, Case D (1990) Langevin modes of macromolecules: applications to crambin and DNA hexamers. Biopolymers 29:1409–1421

    Article  CAS  Google Scholar 

  44. Jörg W, Peter SS, Still WC (1999) Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO). J Comput Chem 20:217–230

    Article  Google Scholar 

  45. Roberts E, Eargle J, Wright D, Luthey-Schulten Z (2006) Multiseq: unifying sequence and structure data for evolutionary analysis. BMC Bioinforma 7:382–393

    Article  Google Scholar 

  46. Chen X, Poon BK, Dousis A, Wang Q, Ma J (2007) Normal-mode refinement of anisotropic thermal parameters for potassium channel KcsA at 3.2 Å crystallographic resolution. Structure 15:955–962

    Article  Google Scholar 

Download references

Acknowledgments

The China Scholarship Council is gratefully acknowledged for granting a PhD scholarship to Yan LI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Delamar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 419 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Barbault, F., Delamar, M. et al. Targeted molecular dynamics (TMD) of the full-length KcsA potassium channel: on the role of the cytoplasmic domain in the opening process. J Mol Model 19, 1651–1666 (2013). https://doi.org/10.1007/s00894-012-1726-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1726-3

Keywords

Navigation