Log in

KcsA closed and open: modelling and simulation studies

  • Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Bacterial homologues of mammalian potassium channels provide structures of two states of a gated K channel. Thus, the crystal structure of KcsA represents a closed state whilst that of MthK represents an open state. Using homology modelling and molecular dynamics simulations we have built a model of the transmembrane domain of KcsA in an open state and have compared its conformational stability with that of the same domain of KcsA in a closed state. Approximate Born energy calculations of monovalent cations within the two KcsA channel states suggest that the intracellular hydrophobic gate in the closed state provides a barrier of height ~5 kT to ion permeation, whilst in the open state the barrier is absent. Simulations (10 ns duration) in an octane slab (a simple membrane mimetic) suggest that closed- and open-state models are of comparable conformational stability, both exhibiting conformational drifts of ~3.3 Å Cα RMSD relative to the respective starting models. Substantial conformational fluctuations are observed in the intracellular gate region during both simulations (closed state and open state). In the simulation of open-state KcsA, rapid (<5 ns) exit of all three K+ ions occurs through the intracellular mouth of the channel. Helix kink and swivel motion is observed at the molecular hinge formed by residue G99 of the M2 helix. This motion is more substantial for the open- than for the closed-state model of the channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3 A
Fig. 4
Fig. 5
Fig. 6A, B
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Allen TW, Chung SH (2001) Brownian dynamics study of an open-state KcsA potassium channel. Biochim Biophys Acta 1515:83–91

    CAS  PubMed  Google Scholar 

  • Allen TW, Kuyucak S, Chung SH (1999) Molecular dynamics study of the KcsA potassium channel. Biophys J 77:2502–2516

    CAS  PubMed  Google Scholar 

  • Allen TW, Bliznyuk A, Rendell AP, Kuyucak S, Chung SH (2000) The potassium channel: structure, selectivity and diffusion. J Chem Phys 112:8191–8204

    Article  CAS  Google Scholar 

  • Åqvist J (1990) Ion water interaction potentials derived from free-energy perturbation simulations. J Phys Chem 94:8021–8024

    Google Scholar 

  • Åqvist J, Luzhkov V (2000) Ion permeation mechanism of the potassium channel. Nature 404:881–884

    Article  PubMed  Google Scholar 

  • Ashcroft FM (2000) Ion channels and disease. Academic Press, San Diego

  • Bass RB, Strop P, Barclay M, Rees DC (2002) Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel. Science 298:1582–1587

    Article  CAS  PubMed  Google Scholar 

  • Beckstein O, Sansom MSP (2003) Liquid–vapor oscillations of water in hydrophobic nanopores. Proc Natl Acad Sci USA 100:7063–7068

    Article  CAS  PubMed  Google Scholar 

  • Beckstein O, Biggin PC, Sansom MSP (2001) A hydrophobic gating mechanism for nanopores. J Phys Chem B 105:12902–12905

    Article  CAS  Google Scholar 

  • Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    CAS  Google Scholar 

  • Berger O, Edholm O, Jahnig F (1997) Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidycholine at full hydration, constant pressure and constant temperature. Biophys J 72:2002–2013

    CAS  PubMed  Google Scholar 

  • Bernèche S, Roux B (2000) Molecular dynamics of the KcsA K+ channel in a bilayer membrane. Biophys J 78:2900–2917

    PubMed  Google Scholar 

  • Bernèche S, Roux B (2001) Energetics of ion conduction through the K+ channel. Nature 414:73–77

    Article  PubMed  Google Scholar 

  • Biggin PC, Sansom MSP (2001) Channel gating: twist to open. Curr Biol 11:R364–R366

    CAS  PubMed  Google Scholar 

  • Biggin PC, Shrivastava IH, Smith GR, Sansom MSP (2001) Non-equilibrium molecular dynamics study of KcsA gating. Biophys J 80:514

    Google Scholar 

  • Bostick DL, Berkowitz ML (2003) The implementation of slab geometry for membrane-channel molecular dynamics simulations. Biophys J 85:97–107

    CAS  PubMed  Google Scholar 

  • Bright JN, Shrivastava IH, Cordes FS, Sansom MSP (2002) Conformational dynamics of helix S6 from Shaker potassium channel: simulation studies. Biopolymers 64:303–313

    Article  CAS  PubMed  Google Scholar 

  • Capener CE (2002) Modelling and simulation studies of potassium channels, DPhil thesis, University of Oxford, p 223

  • Capener CE, Sansom MSP (2002) MD simulations of a K channel model: sensitivity to changes in ions, waters and membrane environment. J Phys Chem B 106:4543–4551

    Article  CAS  Google Scholar 

  • Capener CE, Shrivastava IH, Ranatunga KM, Forrest LR, Smith GR, Sansom MSP (2000) Homology modelling and molecular dynamics simulation studies of an inward rectifier potassium channel. Biophys J 78:2929–2942

    CAS  PubMed  Google Scholar 

  • Capener CE, Kim HJ, Arinaminpathy Y, Sansom MSP (2002) Ion channels: structural bioinformatics and modelling. Human Mol Genet 11:2425–2433

    Article  CAS  Google Scholar 

  • Capener CE, Proks P, Ashcroft FM, Sansom MSP (2003) Filter flexibility in a mammalian K channel: models and simulations of Kir6.2 mutants. Biophys J 84:2345–2356

    CAS  PubMed  Google Scholar 

  • Chang G, Spencer RH, Lee AT, Barclay MT, Rees DC (1998) Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science 282:2220–2226

    Article  CAS  PubMed  Google Scholar 

  • Cordes FS, Bright JN, Sansom MSP (2002) Proline-induced distortions of transmembrane helices. J Mol Biol 323:951–960

    Article  CAS  PubMed  Google Scholar 

  • Corry B, Kuyucak S, Chung SH (2000) Tests of continuum theories as models of ion channels. II. Poisson–Nernst Planck theory versus brownian dynamics. Biophys J 78:2364–2381

    CAS  PubMed  Google Scholar 

  • Cortes DM, Cuello LG, Perozo E (2001) Molecular architecture of full-length KcsA: role of cytoplasmic domains in ion permeation and activation gating. J Gen Physiol 117:165–180

    CAS  PubMed  Google Scholar 

  • Daune M (1999) Molecular biophysics: structures in motion. Oxford University Press, Oxford

    Google Scholar 

  • Domene C, Sansom MSP (2003) A potassium channel, ions and water: simulation studies based on the high resolution X-ray structure of KcsA. Biophys J (in press)

  • Doyle DA, Cabral JM, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Cahit BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77

    CAS  PubMed  Google Scholar 

  • Dutzler R, Campbell EB, Cadene M, Chait BT, MacKinnon R (2002) X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity. Nature 415:287–294

    CAS  PubMed  Google Scholar 

  • Guidoni L, Torre V, Carloni P (1999) Potassium and sodium binding in the outer mouth of the K+ channel. Biochemistry 38:8599–8604

    Article  CAS  PubMed  Google Scholar 

  • Guidoni L, Torre V, Carloni P (2000) Water and potassium dynamics in the KcsA K+ channel. FEBS Lett 477:37–42

    CAS  PubMed  Google Scholar 

  • Hille B (2001) Ionic channels of excitable membranes, 3rd edn. Sinauer, Sunderland, Mass

  • Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R (2002a) Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417:515–522

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R (2002b) The open pore conformation of potassium channels. Nature 417:523–526

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT, Mackinnon R (2003) X-ray structure of a voltage-dependent K+ channel. Nature 423:33–41

    Article  CAS  PubMed  Google Scholar 

  • Kuo A, Gulbis JM, Antcliff JF, Rahman T, Lowe ED, Zimmer J, Cuthbertson J, Ashcroft FM, Ezaki T, Doyle DA (2003) Crystal structure of the potassium channel KirBac1.1 in the closed state. Science 330:1921–1926

    Google Scholar 

  • Leach AR (2001) Molecular modelling. Principles and applications, 2nd edn. Longman, Harlow, UK

  • Liu Y, Sompornpisut P, Perozo E (2001) Structure of the KcsA channel intracellular gate in the open state. Nat Struct Biol 8:883–887

    Article  CAS  PubMed  Google Scholar 

  • Marrink SJ, Berger O, Tieleman DP, Jahnig F (1998) Adhesion forces of lipids in a phospholipid membrane studied by molecular dynamics simulations. Biophys J 74:931–943

    CAS  PubMed  Google Scholar 

  • Mashl RJ, Tang YZ, Schnitzer J, Jakobsson E (2001) Hierarchical approach to predicting permeation in ion channels. Biophys J 81:2473–2483

    CAS  PubMed  Google Scholar 

  • Miyazawa A, Fujiyoshi Y, Unwin N (2003) Structure and gating mechanism of the acetylcholine receptor pore. Nature 423:949–955

    Article  CAS  Google Scholar 

  • Morris AL, MacArthur MW, Hutchinson EG, Thornton JM (1992) Stereochemical quality of protein structure coordinates. Proteins Struct Funct Genet 12:345–364

    CAS  PubMed  Google Scholar 

  • Perozo E, Cortes DM, Cuello LG (1998) Three-dimensional architecture and gating mechanism of a K+ channel studied by EPR spectroscopy. Nat Struct Biol 5:459–469

    CAS  PubMed  Google Scholar 

  • Perozo E, Cortes DM, Cuello LG (1999) Structural rearrangements underlying K+-channel activation gating. Science 285:73–78

    CAS  PubMed  Google Scholar 

  • Ranatunga KM, Shrivastava IH, Smith GR, Sansom MSP (2001) Sidechain ionisation states in a potassium channel. Biophys J 80:1210–1219

    CAS  PubMed  Google Scholar 

  • Roux B, MacKinnon R (1999) The cavity and pore helices in the KcsA K+ channel: electrostatic stabilization of monovalent cations. Science 285:100–102

    CAS  PubMed  Google Scholar 

  • Roux B, Bernèche S, Im W (2000) Ion channels, permeation and electrostatics: insight into the function of KcsA. Biochemistry 39:13295–13306

    Article  CAS  PubMed  Google Scholar 

  • Sansom MSP, Shrivastava IH, Bright JN, Tate J, Capener CE, Biggin PC (2002) Potassium channels: structures, models, simulations. Biochim Biophys Acta 1565:294–307

    Article  CAS  PubMed  Google Scholar 

  • Shen YF, Kong YF, Ma JP (2002) Intrinsic flexibility and gating mechanism of the potassium channel KcsA. Proc Natl Acad Sci USA 99:1949–1953

    Article  CAS  PubMed  Google Scholar 

  • Shrivastava IH, Sansom MSP (2000) Simulations of ion permeation through a potassium channel: molecular dynamics of KcsA in a phospholipid bilayer. Biophys J 78:557–570

    CAS  PubMed  Google Scholar 

  • Shrivastava IH, Sansom MSP (2002) Molecular dynamics simulations and KcsA channel gating. Eur Biophys J 31:207–216

    Article  CAS  PubMed  Google Scholar 

  • Shrivastava IH, Tieleman DP, Biggin PC, Sansom MSP (2002) K+ vs. Na+ ions in a K channel selectivity filter: a simulation study. Biophys J 83:633–645

    CAS  PubMed  Google Scholar 

  • Smart OS, Neduvelil JG, Wang X, Wallace BA, Sansom MSP (1996) Hole: a program for the analysis of the pore dimensions of ion channel structural models. J Mol Graph 14:354–360

    CAS  Google Scholar 

  • Tieleman DP, Sansom MSP (2001) Molecular dynamics simulations of antimicrobial peptides: from membrane binding to trans-membrane channels. Int J Quantum Chem 83:166–179

    Article  CAS  Google Scholar 

  • Tieleman DP, Berendsen HJC, Sansom MSP (2001) Voltage-dependent insertion of alamethicin at phospholipid/water and octane/water interfaces. Biophys J 80:331–346

    CAS  PubMed  Google Scholar 

  • Unwin N (1993) Nicotinic acetylcholine receptor at 9 Å resolution. J Mol Biol 229:1101–1124

    Article  CAS  PubMed  Google Scholar 

  • Unwin N (1995) Acetylcholine receptor channel imaged in the open state. Nature 373:37–43

    CAS  PubMed  Google Scholar 

  • Unwin N, Miyazawa A, Fujiyoshi Y (2002) Activation of the nicotinic acetylcholine receptor involves a switch in conformation of the α subunits. J Mol Biol 319:1165–1176

    Article  CAS  PubMed  Google Scholar 

  • Yellen G (2002) The voltage-gated potassium channels and their relatives. Nature 419:35–42

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Morais-Cabral JH, Kaufman A, MacKinnon R (2001) Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 Å resolution. Nature 414:43–48

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Wellcome Trust and the BBSRC for funding, and the Oxford Supercomputing Centre for access to computing facilities. Our thanks to all of our colleagues for their interest in this work, and especially to Declan Doyle and to Nigel Unwin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark S. P. Sansom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holyoake, J., Domene, C., Bright, J.N. et al. KcsA closed and open: modelling and simulation studies. Eur Biophys J 33, 238–246 (2004). https://doi.org/10.1007/s00249-003-0355-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-003-0355-2

Keywords

Navigation