Log in

Characterization and source apportionment of black carbon over a valley glacier at transitional climatic zone of the central-western Himalaya

  • Research
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Sufficient site-level observations are needed to resolve the discrepancies between in situ and space-based observations for reliable climate mitigation and adaptation strategies. Resolving such discrepancies from climate-sensitive and understudied Himalaya is the priority for the Indian sub-continent. This study investigates characteristics and dynamics of equivalent black carbon aerosol (eBC) including sources over a glaciated valley at the transitional climate zone between central and western Himalaya. Thermo-topographic factors influencing valley-scale dynamics of eBC were observed by coupled measurements on instantaneous eBC (Aethalometer) and meteorological state parameters at a high altitude (4000 m asl) in the Indian Himalaya covering an annual cycle (October 2015 to August 2016). Results indicate a very large variation (38–5638 ng m−3) in mean daily BC concentration (308 ± 37 ng m−3). Seasonally, the eBC concentration was found highest during the pre-monsoon (1276 ± 115 ng m−3) and lowest during the monsoon season (308 ± 37 ng m−3). In contrast, the magnitude was comparable during winter and post-monsoon seasons (400–500 ng m−3). BC-induced mean annual radiative forcing at the atmosphere was + 10.1 ± 3.0 W m−2. These results indicate a substantial eBC burden over the region even at this high tropospheric altitude in this pristine glacier environment. On the other hand, the diurnal-scale variability in eBC concentration is primarily governed by high-altitude meteorological processes. Further, source apportionment analyses underscore the seasonal scale influence of monsoon and westerly circulation systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

Code availability

MATLAB R2007a (The Math Works, Inc., Natick, MA, USA) and wavelet analysis software.

References

  • Babu SS, Moorthy KK (2002) Aerosol black carbon over a tropical coastal station in India. Geophy Res Lett 29(23):2098

    Google Scholar 

  • Beegum SN, Moorthy KK, Babu SS, Satheesh SK, Vinoj V, Badarinath KVS, Safai PD, Devara PCS, Singh S, Vinod D, U. C& Pant, P. (2009) Spatial distribution of aerosol black carbon over India during pre-monsoon season. Atmos Environ 43:1071–1078

    Google Scholar 

  • Bhugwant C, Miloud B, Riviere E, Leveau J (2001) Diurnal and seasonal variation of carbonaceous aerosols at a remote MBL site of La Reunion Island. Atmos Res 57:105–121

    Google Scholar 

  • Bian H, Tie X, Cao J, Ying Z, Han S, Xue Y (2011) Analysis of a severe dust storm event over China: application of the WRF-dust model. Aero Air Quality Res 11:419–428

    Google Scholar 

  • Bonasoni P, Laj P, Marinoni A, Sprenger M, Angelini F, Arduini J, Bonafè U, Calzolari F, Colombo T, Decesari S (2010) Atmospheric brown clouds in the Himalayas: first two years of continuous observations at the Nepal Climate Observatory-Pyramid (5079 m). Atmos Chem Phy 10:7515–7531. https://doi.org/10.5194/acp-10-7515-2010

    Article  Google Scholar 

  • Bond TC, Bergstrom RW (2006) Light absorption by carbonaceous particles: an investigative review. Aero Sci Tech 40:27–67

    Google Scholar 

  • Bond TC, Doherty SJ, Fahey DW, Forster PM, Berntsen T, DeAngelo BJ, Flanner MG, Ghan S, Kärcher B, Koch D, Kinne S, Kondo Y, Quinn PK, Sarofim MC, Schultz MG, Schulz M, Venkataraman C, Zhang H, Zhang S, Bellouin N, Guttikunda SK, Hopke PK, Jacobson MZ, Kaiser JW, Klimont Z, Lohmann U, Schwarz JP, Shindell D, Storelvmo T, Warren SG, Zender CS (2013) Bounding the role of black carbon in the climate system: a scientific assessment. J Geophy Res Atmos 118(11):5380 5552

    Google Scholar 

  • Chakraborty T, Lee X (2019) Land cover regulates the spatial variability of temperature response to the direct radiative effect of aerosols. Geophy Res Lett 46(15):8995–9003

    Google Scholar 

  • Das SK, Dobhal DP, Juyal N (2010) Variability of aerosol optical depth and recent recessional trend in Dokraini Glacier, Bhagirathi Valley, Garhwal Himalaya. Curr Sci 99:1816–1820

    Google Scholar 

  • Davidson CI, Jaffrezo JL, Mosher BW, Dibb JE, Boavs RD, Bodhaine BA, Rasmussen IIRA, Boutron CF, Ducroz FM, Cachier TM, Ducret J, Colin JL, Heidam NZ, Kemp K, Himmamo R (1993) Chemical constituents in the air and snow at Dye 3, Greenland: II Analysis of episodes in April 1989. Atmos Environ 27(A):2723–2738

    Google Scholar 

  • Dumka UC, Moorthy KK, Kumar R, Hegde P, Sagar R, Pant P, Singh N, Babu S (2010) Characteristics of aerosol black carbon mass concentration over a high altitude location in the Central Himalayas from multi-year measurements. Atmos Res 96:510–521

    Google Scholar 

  • Dumka UC, Saheb SD, Kaskaoutis DG, Kant Y, Mitra D (2016) Columnar aerosol characteristics and radiative forcing over the Doon Valley in the Shivalik range of northwestern Himalayas. Environ Sci Pollut Res 23(24):25467–25484

    Google Scholar 

  • Feng N, Christopher SA (2014) Clear sky direct radiative effects of aerosols over Southeast Asia based on satellite observations and radiative transfer calculations. Remote Sen Environ 152:333–344

    Google Scholar 

  • Ginot P, Dumont M, Lim S, Patris N, Taupin JD, Wagnon P, Gilbert A, Arnaud Y, Marinoni A, Bonasoni P, Laj P (2014) A 10 years record of black carbon and dust from a Mera Peak ice core (Nepal): variability and potential impact on melting of Himalayan glaciers. The Cryso 8:1479–1496

    Google Scholar 

  • Haeger-Eugensson M (1999) Vertical interactions in a nocturnal multi-scale wind system influenced by atmospheric stability in a coastal area. Theo App Clim 64:69–82

    Google Scholar 

  • Hegde P, Pant P, Naja M, Dumka UC, Sagar R (2007) South Asian dust episode in June 2006: aerosol observations in the central Himalayas. Geophy Res Lett 34:L23802. https://doi.org/10.1029/2007GL030692

    Article  Google Scholar 

  • Hindman EE, Upadhyay BP (2002) Air pollution transport in the Himalayas of Nepal and Tibet during the 1995–1996 dry seasons. Atmos Environ 36(4):727–739. https://doi.org/10.1016/S1352-2310(01)00495-2

    Article  Google Scholar 

  • Hyvarinen AP, Lihavainen H, Komppula M, Sharma VP, Kerminen VM, Panwar TS, Viisanenet Y (2009) Continuous measurements of optical properties of atmospheric aerosols in Mukteshwar Northern India. J Geophy Res 114:D08207. https://doi.org/10.1029/2008JD011489

    Article  Google Scholar 

  • Jacobson MZ (2001) Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 409(6821):695

    Google Scholar 

  • Jacobson MZ (2004) Climate response of fossil fuel and bio fuel soot, accounting for soot feedback to snow and sea ice albedo and emissivity. J Geophy Res 109:D21201

    Google Scholar 

  • Karki R, Schickhoff U, Scholten T, Böhner J (2017) Rising Precipitation Extremes across Nepal. Climate 5(1):4

    Google Scholar 

  • Kaspari S, Painter TH, Gysel M, Skiles SM, Schwikowski M (2014) Seasonal and elevational variations of black carbon and dust in snow and ice in the Solu-Khumbu, Nepal and estimated radiative forcings. Atmos Chem Phy 14(15):8089–8103

    Google Scholar 

  • Kopacz M, Mauzerall DL, Wang J, Leibensperger EM, Henze DK, Singh K (2011) Origin and radiative forcing of black carbon transported to the Himalayas and Tibetan Plateau. Atmos Chem Phy 11(6):2837–2852

    Google Scholar 

  • Li X, Kang S, Zhang G, Qu B, Tripathee L, Paudyal R, **g Z, Zhang Y, Yan F, Li G, Cui X (2018) Light-absorbing impurities in a southern Tibetan Plateau glacier: variations and potential impact on snow albedo and radiative forcing. Atmos Res 200:77–87

    Google Scholar 

  • Mahart L (1998) Flux sampling errors for aircraft and towers. J Atmos Oce Tech 15:416–429

    Google Scholar 

  • Marinoni A, Cristofanelli P, Laj P, Duchi R, Calzolari F, Decesari S, Sellegri K, Vuillermoz E, Verza GP, Villani P, Bonason P (2010) Aerosol mass and black carbon concentrations, a two year record at NCO-P (5079 m, Southern Himalayas). Atmos Chem Phys 10(17):8551–8562

    Google Scholar 

  • Menon S, Koch D, Beig G, Sahu S, Fasullo J, Orlikowski D (2010) Black carbon aerosols and the third polar ice cap. Atmos Chem Phy 10:4559–4571

    Google Scholar 

  • Ming J, **ao C, Du Z, Yang X (2013) An overview of black carbon deposition in high Asia glaciers and its impacts on radiation balance. Advan Wat Res 55:80–87

    Google Scholar 

  • Mu Q, Liao H (2014) Simulation of the inter-annual variations of aerosols in China: role of variations in meteorological parameters. Atmos Chem Phy 14(18):9597–9612

    Google Scholar 

  • Nair VS, Babu SS, Moorthy KK, Sharma AK, Marinoni A, Ajai. (2013) Black carbon aerosols over the Himalayas: direct and surface albedo forcing. Tellus B 65:19738

    Google Scholar 

  • Negi PS (2018) Real-time monitoring of black carbon aerosols in the glaciated valley of north-western Indian Himalaya. Curr Sci 114(6):1–3

    Google Scholar 

  • Negi PS, Pandey C, Singh N (2019) Black carbon aerosols in the ambient air of Gangotri Glacier valley of north-western Himalaya in India. Atmos Environ 214:116879

    Google Scholar 

  • Nishita C, Osada K, Matsunaga K, Iwasaka Y (2007) Number-size distribution of free tropospheric aerosol particles at Mt. Norikura, Japan: effects of precipitation and air mass transportation pathways. J Geophy Res 112:10213. https://doi.org/10.1029/2006JD008099

    Article  Google Scholar 

  • Nyeki S, Li F, Weingartner E, Streit N, Colbeck I, Gaggeler HW, Baltensperg U (1998) The background aerosol size distribution in the free troposphere: an analysis of the annual cycle at a high-alpine site. J Geophy Res 103(31):747–3761

    Google Scholar 

  • Petzold A, Kopp C, Niessner R (1997) The dependence of the specific attenuation cross-section on black carbon mass fraction and particle size. Atmos Environ 31(5):661–672

    Google Scholar 

  • Putero D et al (2015) Seasonal variation of ozone and black carbon observed at Pakanjol, an urban site in the Kathmandu Valley Nepal. Atmos Chem Phy Discuss 15:22527–22566

    Google Scholar 

  • Qian Y, Flanner MG, Leung LR, Wang W (2011) Sensitivity studies on the impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate. Atmos Chem Phy 11:1929–1948. https://doi.org/10.5194/acp-11-1929-2011

    Article  Google Scholar 

  • Ram K, Sarin MM, Hedge P (2008) Atmospheric abundances of primary and secondary carbonaceous species at two high altitude sites in India: sources and temporal variability. Atmos Environ 42:6785–6796

    Google Scholar 

  • Ramanathan V, Carmichael G (2008) Global and regional climate changes due to black carbon. Nat GeoSci 1(4):221

    Google Scholar 

  • Ramanathan V, Crutzen PJ, Kiehl JT, Rosenfeld D (2001) Aerosols, climate, and the hydrological cycle. Sci 294(5549):2119–2124

    Google Scholar 

  • Reddy MS, Venkataraman C (1999) Direct radiative forcing from anthropogenic carbonaceous aerosols over India. Curr Sci 76:1005–1011

    Google Scholar 

  • Salmond JA, McKendry IG (2002) Secondary ozone maxima in a very stable nocturnal boundary layer: observations from the Lower Fraser Valley, B.C. Atmos Environ 36:5771–5782

    Google Scholar 

  • Salmond JA, McKendry IG (2005) A review ofnturbulence in the very stable nocturnal boundary layer and its implications for air quality. Prog Phy Geog 29(2):171–188. https://doi.org/10.1191/0309133305pp442ra

    Article  Google Scholar 

  • Sarkar C, Chatterjee A, Singh AK, Ghosh SK, Raha S (2015) Characterization of black carbon aerosols over Darjeeling — a high altitude Himalayan station in Eastern India. Aero Air Qual Res 15:465–478

    Google Scholar 

  • Sellegri K, Laj P, Venzac H, Boulon J, Picard D, Villani P, Bonasoni P, Marinoni A, Cristofanelli P, Vuillermmoz E (2010) Seasonal variations of aerosol size distributions based on long-term measurements at the high altitude Himalayan site of Nepal Climate Observatory-Pyramid (5,079 m). Nepal Atmos Chem Phy 10:6537–6566

    Google Scholar 

  • Shrestha P, Barros AP (2010) Joint spatial variability of aerosol, clouds and rainfall in the Himalayas from satellite data. Atmos Chem Phy 10:8305–8317

    Google Scholar 

  • Shrestha RK, Gallagher MW, Connolly PJ (2016) Diurnal and seasonal variations of meteorology and aerosol concentrations in the foothills of the Nepal Himalayas (Nagarkot: 1,900 m asl). Asia-Pacific J Atmos Sci 52(1):63–75. https://doi.org/10.1007/s13143-016-0002-3

    Article  Google Scholar 

  • Shrestha S, Yao T, Adhikari TR (2019) Analysis of rainfall trends of two complex mountain river basins on the southern slopes of the Central Himalayas. Atmos Res 215:99–115

    Google Scholar 

  • Singh J, Park WK, Yadav RR (2006) Tree-ring-based hydrological records for western Himalaya, India, since AD 1560. Clim Dyn 26(2–3):295–303

    Google Scholar 

  • Srivastva AK, Pant P, Dumka UC, Hegde P (2011) Black carbon aerosol characteristics and its radiative impact over Nainital: a high-altitude station in central Himalaya. J Inst Eng 8(3):1–10

    Google Scholar 

  • Tripathi SN, Srivastava AK, Dey S, Satheesh SK, Moorthy KK (2007) The vertical profile of atmospheric heating rate of black carbon aerosols at Kanpur in northern India. Atmos Environ 41:6909–6915

    Google Scholar 

  • Venzac H et al (2008) High frequency new particle formation in the Himalayas. Proc Natl Acad Sci 105:15666–15671

    Google Scholar 

  • Wang R et al (2014) Exposure to ambient black carbon derived from a unique inventory and high-resolution model. Proc Natl Acad Sci 111(7):2459

    Google Scholar 

  • Wang Y, Le T, Chen G, Yung YL, Su H, Seinfeld JH, Jiang JH (2020) Reduced European aerosol emissions suppress winter extremes over northern. Eurasia Nat Clim Change. https://doi.org/10.1038/s41558-020-0693-4

    Article  Google Scholar 

  • Weingartnera E, Saathob H, Schnaiterb M, Streita N, Bitnarc B, Baltensperger U (2003) Absorption of light by soot particles: determination of the absorption coefficient by means of aethalometers. J. Aero Sci 34:1445–1463

    Google Scholar 

  • Wiscombe WJ, Warren SG (1980) A model for the spectral albedo of snow I: pure snow. J Atmos Sci 37(12):2712–2733

    Google Scholar 

  • Xu B, Yao T, Liu X, Wang N (2006) Elemental and organic carbon measurements with a two-step heating gas chromatography system in snow samples from the Tibetan Plateau. Ann Glacio 43(1):257–263

    Google Scholar 

  • Xu B, Wang M, Joswiak DR, Cao J, Yao TD, Wu GJ, Yang W, Zhao HB (2009) Deposition of anthropogenic aerosols in a south-eastern Tibetan glacier. J Geophy Res Atmos 114:1–8

    Google Scholar 

  • Xu B, Cao J, Hansen J, Yao T, Joswia DR, Wang N, Wu G, Wang M, Zhao H, Yang W, Liu X, He J (2009) Black soot and the survival of Tibetan glaciers. PNAS USA 106(52):22114–22118

    Google Scholar 

  • Yadav JS, Pratap B, Gupta AK, Dobhal DP, Yadav RBS, Tiwari SK (2019) Spatio-temporal variability of near-surface air temperature in the Dokriani glacier catchment, central Himalaya. Theo App Clim 136:1513–1532

    Google Scholar 

  • Zhang Y, Kang S, Cong Z, Schmale J, Sprenger M, Li C, Yang W, Gao T, Sillanpää M, Li X, Liu Y (2017) Light-absorbing impurities enhance glacier albedo reduction in the southeastern Tibetan Plateau. J Geophys Res: Atmos 122(13):6915–6933

    Google Scholar 

  • Zhao Z, Wang Q, Xu B, Shen Z, Huang R, Zhu C, Su X, Zhao S, Long X, Liu S, Cao J (2017) Black carbon aerosol and its radiative impact at a high-altitude remote site on the southeastern Tibet Plateau. J Geophys Res: Atmos 122(10):5515–5530

    Google Scholar 

  • Abatzoglou, J. T., Hatchett, B. J., Fox-Hughes, P., Gershunov, A. & Nauslar, N. (2020). Global climatology of synoptically-forced downslope winds. Int. J. Climat., 1–20. https://doi.org/10.1002/joc.6607.

  • Babu, S.S., Chaubey, J. P., Moorthy, K. K.,Gogoi, M. M., Kompalli, S. K., Sreekanth, V., Bagare, S. P., Bhatt, B. C., Gaur, V. K., Prabhu, T. P.&Singh, N. S. (2011). High altitude (∼4520 m asl) measurements of black carbon aerosols over western trans Himalayas: Seasonal heterogeneity and source apportionment. J. Geophy. Res: Atmosphere. 116(D24).

  • Flanner, M. G., Zender, C. S., Randerson, J. T. & Rasch, P. J. (2007). Present day climate forcing and response from black carbon in snow. J. Geophy. Res: Atmos., 112(D11).

  • Forster P, et al. (2007). Changes in atmospheric constituents and in radiative forcing. Chapter 2. In Climate Change 2007. The Physical Science Basis.

  • Gautam, R., Hsu, N. C., Lau, K. M. (2010). Premonsoon aerosol characterization and radiative effects over the Indo‐Gangetic Plains: implications for regional climate warming. J. Geophy. Res: Atmos, 115(D17).

  • Li, et al., 2016. Sources of black carbon to the Himalayan–Tibetan Plateau glaciers. Nat. Commun. https://doi.org/10.1038/ncomms12574.

  • Nair, V. S., Babu, S. S., Moorthy, K. K. (2008). Spatial distribution and spectral characteristics of aerosol single scattering albedo over the Bay of Bengal inferred from ship borne measurements. Geophy. Res. Lett., 35(10).

  • Panday, A. K. & Prinn, R. G. (2009). Diurnal cycle of air pollution in the Kathmandu Valley, Nepal: Observations. J. Geophy. Res., 114.

  • Solomon, S. et al. 2007. Climate change 2007 — the physical science basis: working Group I contribution to the fourth assessment report of the IPCC (Vol. 4). Cambridge University Press.

Download references

Acknowledgements

We express our thanks to the Director, Wadia Institute of Himalayan Geology, for providing facilities for the research work. The valuable suggestions of Dr. Prashant Hegde (SPL, Thiruvanantpuram) and Dr. K. K. Moorthy (IISc, Bangalore) are gratefully acknowledged. We would like to appreciate Sh. Mohit Singhal and Dr. Purushottam Garge for few data analyses. The authors are also highly thankful to the anonymous reviewers for their fruitful & valuable comments.

Funding

We received financial support from the Department of Science and Technology (DST, Government of India).

Author information

Authors and Affiliations

Authors

Contributions

“Indira Karakoti” analysed the data, wrote the manuscript, and prepared the figures. “Nilendu Singh” wrote some parts of manuscript and prepared some of the figures. “Tanuj Shukla” analysed the data and edited the figures. “Akhilesh Chandra Gairola” collected the data. “D.P. Dobhal” reviewed the manuscript. Finally, all the authors reviewed the paper.

Corresponding author

Correspondence to Indira Karakoti.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 11 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karakoti, I., Singh, N., Shukla, T. et al. Characterization and source apportionment of black carbon over a valley glacier at transitional climatic zone of the central-western Himalaya. Theor Appl Climatol 151, 1383–1397 (2023). https://doi.org/10.1007/s00704-022-04313-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-022-04313-z

Navigation