Transport Mechanisms, Potential Sources, and Radiative Impacts of Black Carbon Aerosols on the Himalayas and Tibetan Plateau Glaciers

  • Chapter
  • First Online:
Air Pollution and Its Complications

Part of the book series: Springer Atmospheric Sciences ((SPRINGERATMO))

Abstract

Black carbon (BC) is a light-absorbing particle in the atmosphere, which can heat the atmosphere by absorbing solar radiation and changing the surface snow albedo after deposition. Fossil fuel and biomass burning are contributed significantly to BC loading. This chapter presents the characteristics, potential source regions, and transport mechanisms of BC aerosols and their radiative impacts on cryospheric change on the Himalayas-Tibetan Plateau (HTP) (also named the Third Pole) region. We reviewed the several past studies from the region on BC mass concentration in the ambient air as well as in the glaciers (surface snow and ice) and snow cover over the fragile Third Pole region. Further, a comparison of the concentrations of BC in the surface snow and ice, potential source regions, and radiative impacts is reviewed. The preliminary results overview from the research network Atmospheric Pollution and Cryospheric Change (APCC) on BC transport to the HTP is discussed. BC particles emitted from South Asia, their transport, and deposition have a significant impact on the HTP glaciers and snow cover. The maximum and minimum mass concentration of BC was reported in dry pre-monsoon and monsoon seasons, respectively. BC deposition on glaciers could potentially reduce the surface albedo and accelerate surface snow/ice melting. Glaciers located in HTP being an essential source of fresh water for the millions of populations in the Asian region and the retreat of these glaciers will have far-reaching consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Babu SS, Chaubey JP, Moorthy KK, Gogoi MM, Kompalli SK, Sreekanth V, Bagare SP, Bhatt BC, Gaur VK, Prabhu TP, Singh NS (2011) High altitude (~4520 m amsl) measurements of black carbon aerosols over Western Trans-Himalayas: seasonal heterogeneity and source apportionment. J Geophys Res 116:D24201. https://doi.org/10.1029/2011JD016722

    Article  Google Scholar 

  • Bond TC, Bergstrom RW (2006) Light absorption by carbonaceous particles: an investigative review. Aerosol Sci Technol 40:27–67. https://doi.org/10.1080/02786820500421521

    Article  Google Scholar 

  • Bond TC et al (2004) A technology-based global inventory of black and organic carbon emissions from combustion. J Geophys Res Atmos 109(D14):D14203

    Article  Google Scholar 

  • Bond TC et al (2013) Bounding the role of black carbon in the climate system: a scientific assessment. J Geophys Res Atmos 118(11):5380–5552

    Article  Google Scholar 

  • Brown M et al (2014) An integrated modeling system for estimating glacier and snow melt driven streamflow from remote sensing and earth system data products in the Himalayas. J Hydrol 519:1859–1869

    Article  Google Scholar 

  • Cao JJ et al (2009) Concentrations, seasonal variations, and transport of carbonaceous aerosols at a remote Mountainous region in western China. Atmos Environ 43(29):4444–4452

    Article  Google Scholar 

  • Cao JJ, Tie XX, Xu BQ, Zhao ZZ, Zhu CS, Li GH, et al (2010) Measuring and modeling black carbon (BC) contamination in the SE Tibetan Plateau. J Atmos Chem 67:45–60

    Google Scholar 

  • Carrico CM, Bergin MH, Shrestha AB, Dibb JE, Gomes L, Harris JM (2003) The importance of carbon and mineral dust to seasonal aerosol properties in the Nepal Himalaya. Atmos Environ. https://doi.org/10.1016/S1352-2310(03)00197-3

  • Caspari T, Baumler R, Norbu C, Tshering K, Baillie I (2006) Geochemical investigation of soils developed in different lithologies in Bhutan, Eastern Himalayas. Geoderma 136(1–2):436–458

    Article  Google Scholar 

  • Chen PF et al (2016) Source apportionment of particle-bound polycyclic aromatic hydrocarbons in Lumbini, Nepal by using the positive matrix factorization receptor model. Atmos Res 182:46–53

    Article  Google Scholar 

  • Chen X, Kang S, Cong Z, Yang J, Ma Y (2018) Concentration, temporal variation, and sources of black carbon in the Mt. Everest region retrieved by real-time observation and simulation. Atmos Chem Phys 18(17):12859–12859

    Article  Google Scholar 

  • Chen P et al (2019) Carbonaceous aerosol characteristics on the Third Pole: a primary study based on the Atmospheric Pollution and Cryospheric Change (APCC) network. Environ Pollut 253:49–60

    Article  Google Scholar 

  • Chen P, Kang S, Tripathee L, Ram K, Rupakheti M, Panday AK, Zhang Q, Guo J, Wang X, Pu T, Li C (2020) Light absorption properties of elemental carbon (EC) and water-soluble brown carbon (WS–BrC) in the Kathmandu Valley, Nepal: a 5-year study. Environ Pollut 261:114239

    Article  Google Scholar 

  • Chung CE et al (2010) Anthropogenic aerosol radiative forcing in Asia derived from regional models with atmospheric and aerosol data assimilation. Atmos Chem Phys 10(13):6007–6024

    Article  Google Scholar 

  • Cong Z et al (2015a) Carbonaceous aerosols on the south edge of the Tibetan Plateau: concentrations, seasonality and sources. Atmos Chem Phys 15(3):1573–1584

    Article  Google Scholar 

  • Cong ZY, Kawamura K, Kang SC, Fu PQ (2015b) Penetration of biomass-burning emissions from South Asia through the Himalayas: new insights from atmospheric organic acids. Sci Rep 5:7

    Google Scholar 

  • Dockery DW, Pope CA (1994) Acute respiratory effects of particulate air pollution. Annu Rev Public Health 15(1):107–132

    Article  Google Scholar 

  • Engling G, Zhang YN, Chan CY, Sang XF, Lin M, Ho KF, et al (2011) Characterization and sources of aerosol particles over the southeastern Tibetan Plateau during the Southeast Asia biomass-burning season. Tellus B 63:117–128

    Google Scholar 

  • Feddersen D, Talbot R, Mao H, Sive B (2012) Size distribution of particulate mercury in marine and coastal atmospheres. Atmos Chem Phys 12(22):10899–10909

    Article  Google Scholar 

  • Flanner M, Zender CS, Randerson J, Rasch P (2007) Presentday climate forcing and response from black carbon in snow. J Geophys Res 112:D11202. https://doi.org/10.1029/2006JD008003

  • Flanner MG et al (2009) Springtime warming and reduced snow cover from carbonaceous particles. Atmos Chem Phys 9(7):2481–2497

    Article  Google Scholar 

  • Flanner MG, Liu X, Zhou C, Penner JE, Jiao C (2012) Enhanced solar energy absorption by internally-mixed black carbon in snow grains. Atmos Chem Phys 12:4699–4721. https://doi.org/10.5194/acp-12-4699-2012

  • Gul C et al (2018) Concentrations and source regions of light-absorbing particles in snow/ice in northern Pakistan and their impact on snow albedo. Atmos Chem Phys 18(7):4981–5000

    Article  Google Scholar 

  • Gul C, Mahapatra PS, Kang S, Singh PK, Wu X, He C, Kumar R, Rai M, Xu Y, Puppala SP (2021) Black carbon concentration in the central Himalayas: impact on glacier melt and potential source contribution. Environ Pollut 275:116544

    Google Scholar 

  • Hyvärinen AP, Lihavaine H, Komppula M, Sharma VP, Kerminen VM, Panwar TS et al (2009) Continuous measurements of optical properties of atmospheric aerosols in Mukteshwar, Northern India. J Geophys Res 114(D8):D08207

    Google Scholar 

  • IPCC (2007) Summary for policymakers, climate change, 2007, IPCC. The physical science basis, Contribution of working group I to fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, New York

    Google Scholar 

  • Jacobson MZ (2001) Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 409(6821):695

    Article  Google Scholar 

  • Kang SC et al (2010) Review of climate and cryospheric change in the Tibetan Plateau. Environ Res Lett 5(1):015101

    Article  Google Scholar 

  • Kang S et al (2019) Linking atmospheric pollution to cryospheric change in the third pole region: current progresses and future prospects. Natl Sci Rev 6(4):796–809

    Article  Google Scholar 

  • Kaspari SD, Schwikowski M, Gysel M, Flanner MG, Kang S, Hou S, Mayewski PA (2011) Recent increase in black carbon concentrations from a Mt. Everest ice core spanning 1860–2000 AD. Geophys Res Lett 38(4)

    Google Scholar 

  • Kopacz M et al (2011) Origin and radiative forcing of black carbon transported to the Himalayas and Tibetan Plateau. Atmos Chem Phys 11(6):2837–2852

    Article  Google Scholar 

  • Li C et al (2016a) Sources of black carbon to the Himalayan-Tibetan Plateau glaciers. Nat Commun 7:12574

    Article  Google Scholar 

  • Li CL et al (2016b) Light absorption characteristics of carbonaceous aerosols in two remote stations of the southern fringe of the Tibetan Plateau, China. Atmos Environ 143:79–85

    Article  Google Scholar 

  • Li X et al (2017) Light-absorbing impurities accelerate glacier melt in the Central Tibetan Plateau. Sci Total Environ 587–588:482–490

    Article  Google Scholar 

  • Li CL et al (2018a) Fossil fuel combustion emission from South Asia influences precipitation dissolved organic carbon reaching the remote Tibetan Plateau: isotopic and molecular evidence. J Geophys Res-Atmos 123(11):6248–6258

    Article  Google Scholar 

  • Li XF et al (2018b) Light-absorbing impurities in a southern Tibetan Plateau glacier: variations and potential impact on snow albedo and radiative forcing. Atmos Res 200:77–87

    Article  Google Scholar 

  • Lu Z, Streets DG, Zhang Q, Wang S (2012) A novel back-trajectory analysis of the origin of black carbon transported to the Himalayas and Tibetan Plateau during 1996–2010. Geophys Res Lett 39(1)

    Google Scholar 

  • Luthi ZL et al (2015) Atmospheric brown clouds reach the Tibetan Plateau by crossing the Himalayas. Atmos Chem Phys 15(11):6007–6021

    Article  Google Scholar 

  • Ma J, Zhang T, Guan X, Hu X, Duan A, Liu J (2019) The dominant role of snow/ice albedo feedback strengthened by black carbon in the enhanced warming over the Himalayas. J Clim 32:5883–5899. https://doi.org/10.1175/JCLI-D-18-0720.1

    Article  Google Scholar 

  • Marinoni A, Cristofanelli P, Laj P, Duchi R, Calzolari F, Decesari S et al (2010) Aerosol mass and black carbon concentrations, a two year record at NCO-P (5079 m, Southern Himalayas). Atmos Chem Phys 10(17):8551–8562

    Article  Google Scholar 

  • Menon S, Hansen J, Nazarenko L, Luo Y (2002) Climate effects of black carbon aerosols in China and India. Science 297(5590):2250–2253

    Google Scholar 

  • Menon S, Koch D, Beig G, Sahu S, Fasullo J, Orlikowski D (2010) Black carbon aerosols and the third polar ice cap. Atmos Chem Phys 10(10):4559–4571

    Google Scholar 

  • Ming J, **ao C, Sun J, Kang S, Bonasoni P (2010) Carbonaceous particles in the atmosphere and precipitation of the Nam Co region, central Tibet. J Environ Sci 22(11):1748–1756

    Article  Google Scholar 

  • Ohara TAHK, Akimoto H, Kurokawa JI, Horii N, Yamaji K, Yan X, Hayasaka T (2007) An Asian emission inventory of anthropogenic emission sources for the period 1980–2020. Atmos Chem Phys 7(16):4419–4444

    Google Scholar 

  • Putero D et al (2015) Seasonal variation of ozone and black carbon observed at Paknajol, an urban site in the Kathmandu Valley, Nepal. Atmos Chem Phys 15(24):13957–13971

    Article  Google Scholar 

  • Qian Y, Flanner M, Leung L, Wang W (2011) Sensitivity studies on the impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate. Atmos Chem Phys 11(5):1929–1948

    Article  Google Scholar 

  • Rai M, Mahapatra PS, Gul C, Kayastha RB, Panday AK, Puppala SP (2019) Aerosol radiative forcing estimation over a remote high-altitude location (~4900 masl) near Yala Glacier. Nepal Aerosol Air Qual 19:1872–1891

    Article  Google Scholar 

  • Ram K, Sarin MM, Hegde P (2008) Atmospheric abundances of primary and secondary carbonaceous species at two high-altitude sites in India: sources and temporal variability. Atmos Environ 42(28):6785–6796

    Article  Google Scholar 

  • Ram K, Sarin MM, Hegde P (2010) Long-term record of aerosol optical properties and chemical composition from a high-altitude site (Manora Peak) in Central Himalaya. Atmos Chem Phys 10(23):11791–11803

    Article  Google Scholar 

  • Sarkar C, Chatterjee A, Singh AK, Ghosh SK, Raha S (2015) Characterization of black carbon aerosols over Darjeeling-a high altitude Himalayan station in eastern India. Aerosol Air Qual Res 15:465–478

    Article  Google Scholar 

  • Tripathee L, Kang S, Huang J, Sharma CM, Sillanpää M, Guo J, Paudyal R (2014) Concentrations of trace elements in wet deposition over the central Himalayas, Nepal. Atmos Environ 95:231–238

    Article  Google Scholar 

  • Tripathee L et al (2016) Preliminary health risk assessment of potentially toxic metals in surface water of the Himalayan Rivers, Nepal. Bull Environ Contam Toxicol 97(6):855–862

    Article  Google Scholar 

  • Tripathee L et al (2017) Chemical characteristics of soluble aerosols over the central Himalayas: insights into spatiotemporal variations and sources. Environ Sci Pollut Res 24(31):24454–24472

    Article  Google Scholar 

  • Tripathee L et al (2019) Spatial and temporal distribution of total mercury in atmospheric wet precipitation at four sites from the Nepal-Himalayas. Sci Total Environ 655:1207–1217

    Article  Google Scholar 

  • Tripathee L, Guo J, Kang S, Paudyal R, Sharma CM, Huang J, Chen P, Ghimire PS, Sigdel M, Sillanpää M (2020) Measurement of mercury, other trace elements and major ions in wet deposition at Jomsom: the semi-arid mountain valley of the Central Himalaya. Atmos Res 234:104691

    Article  Google Scholar 

  • Wang X, Pu W, Ren Y, Zhang X, Zhang X, Shi J, ** H, Dai M, Chen Q (2016) Snow albedo reduction in seasonal snow due to anthropogenic dust and carbonaceous aerosols across northern China. Atmos Chem Phys Discuss:1–52. https://doi.org/10.5194/acp-2016-667

  • Xu B et al (2009) Black soot and the survival of Tibetan glaciers. Proc Natl Acad Sci U S A 106(52):22114–22118

    Article  Google Scholar 

  • Yan FP et al (2016) Concentration, sources and light absorption characteristics of dissolved organic carbon on a medium-sized valley glacier, northern Tibetan Plateau. Cryosphere 10(6):2611–2621

    Article  Google Scholar 

  • Yang J, Kang S, Ji Z, Chen D (2018) Modeling the origin of anthropogenic black carbon and its climatic effect over the Tibetan Plateau and surrounding regions. J Geophys Res Atmos 123(2):671–692

    Article  Google Scholar 

  • Yang J, Kang S, Ji Z (2019) Critical contribution of south Asian residential emissions to atmospheric black carbon over the Tibetan plateau. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2019.135923

  • Yao T et al (2012) Third pole environment (TPE). Environ Dev 3:52–64

    Article  Google Scholar 

  • Yasunari T et al (2010) Estimated impact of black carbon deposition during pre-monsoon season from Nepal Climate Observatory–Pyramid data and snow albedo changes over Himalayan glaciers. Atmos Chem Phys 10(14):6603–6615

    Article  Google Scholar 

  • Zhang Y, Kang S, Sprenger M, Cong Z, Gao T, Li C, Tao S, Li X, Zhong X, Xu M, Meng W, Neupane B, Qin X, Sillanpää M (2018) Black carbon and mineral dust in snow cover on the Tibetan Plateau. Cryosphere 12:413–431. https://doi.org/10.5194/tc-12-413-2018

    Article  Google Scholar 

  • Zhao S, Ming J, **ao C, Sun W, Qin X (2012) A preliminary study on measurements of black carbon in the atmosphere of northwest Qilian Shan. J Environ Sci 24(1):152–159

    Article  Google Scholar 

  • Zhao ZZ et al (2013) Aerosol particles at a high-altitude site on the Southeast Tibetan Plateau, China: implications for pollution transport from South Asia. J Geophys Res-Atmos 118(19):11360–11375

    Article  Google Scholar 

Download references

Acknowledgments

This study is supported by the Strategic Priority Research Program of the Chinese Academy of Sciences, Pan-Third Pole Environment Study for a Green Silk Road (Pan-TPE) (XDA20040501), and the State Key Laboratory of Cryospheric Science (SKLCS-ZZ-2018). Lekhendra Tripathee is supported by the Chinese Academy of Science for international Young staff under the PIFI (2020FYC0001) program.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tripathee, L., Gul, C., Kang, S., Chen, P., Huang, J., Rai, M. (2021). Transport Mechanisms, Potential Sources, and Radiative Impacts of Black Carbon Aerosols on the Himalayas and Tibetan Plateau Glaciers. In: Tiwari, S., Saxena, P. (eds) Air Pollution and Its Complications. Springer Atmospheric Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-70509-1_2

Download citation

Publish with us

Policies and ethics

Navigation