Log in

Synthesis of a capillary surface-enhanced Raman scattering substrate integrating sampling and detection based on meniscus self-assembled technology

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A method is proposed to fabricate a novel capillary surface-enhanced Raman scattering (SERS) substrate integrating sampling and detection based on meniscus evaporation self-assembled technology, named Meniscus@AgNPs@Capillary substrate. Ag nanoparticles (AgNPs) were arranged in the inner wall of the capillary through meniscus evaporation. The parameters which might affect the deposition of AgNPs during evaporation were investigated, including the evaporation temperature, self-assembly time, the ratio of silver sol to ethanol, and capillary length. The enhancement effect of SERS under different fabrication conditions was investigated using rhodamine 6G (R6G) as a Raman probe. Moreover, the optimal fabricated Meniscus@AgNPs@Capillary substrate was applied to the detection of several environmental pollutants such as polystyrene nanoplastics (PSNPs) and various antibiotics, with limits of detection (LOD) of 10 µg/L and 1 µg/L, respectively. The Meniscus@AgNPs@Capillary substrate presented the advantages of time and effort saving, high sensitivity, and on-site sampling and testing.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Ashley J, Wu K, Hansen MF, Schmidt MS, Boisen A, Sun Y (2017) Quantitative detection of trace level cloxacillin in food samples using magnetic molecularly imprinted polymer extraction and surface-enhanced raman spectroscopy nanopillars. Anal Chem 89:11484–11490. https://doi.org/10.1021/acs.analchem.7b02725

    Article  CAS  PubMed  Google Scholar 

  2. Durucan O, Wu K, Viehrig M, Rindzevicius T, Boisen A (2018) Nanopillar-assisted SERS chromatography. ACS Sens 3:2492–2498. https://doi.org/10.1021/acssensors.8b00887

    Article  CAS  PubMed  Google Scholar 

  3. Fei J, Wu L, Zhang Y, Zong S, Wang Z, Cui Y (2017) Pharmacokinetics-on-a-chip using label-free SERS technique for programmable dual-drug analysis. ACS Sens 2:773–780. https://doi.org/10.1021/acssensors.7b00122

    Article  CAS  PubMed  Google Scholar 

  4. Yang S, Dai X, Stogin BB, Wong TS (2016) Ultrasensitive surface-enhanced raman scattering detection in common fluids. Proc Natl Acad Sci U S A 113:268–273. https://doi.org/10.1073/pnas.1518980113

    Article  CAS  PubMed  Google Scholar 

  5. Zhu C, Meng G, Zheng P, Huang Q, Li Z, Hu X, Wang X, Huang Z, Li F, Wu N (2016) A hierarchically ordered array of silver-nanorod bundles for surface-enhanced raman scattering detection of phenolic pollutants. Adv Mater 28:4871–4876. https://doi.org/10.1002/adma.201506251

    Article  CAS  PubMed  Google Scholar 

  6. Lin S, Hasi W-L-J, Lin X, Han S-Q-G-W, Lou X-T, Yang F, Lin D-Y, Lu Z-W (2015) Rapid and sensitive SERS method for determination of rhodamine B in chili powder with paper-based substrates. Anal Methods 7:5289–5294. https://doi.org/10.1039/c5ay00028a

    Article  CAS  Google Scholar 

  7. Shan J, Ren T, Li X, ** M, Wang X (2023) Study of microplastics as sorbents for rapid detection of multiple antibiotics in water based on SERS technology. Spectrochim Acta A Mol Biomol Spectrosc 284:121779. https://doi.org/10.1016/j.saa.2022.121779

    Article  CAS  PubMed  Google Scholar 

  8. Wang Y, Yu Y, Liu Y, Yang S (2018) Template-confined site-specific electrodeposition of nanoparticle cluster-in-bowl arrays as surface enhanced raman spectroscopy substrates. ACS Sens 3:2343–2350. https://doi.org/10.1021/acssensors.8b00711

    Article  CAS  PubMed  Google Scholar 

  9. Lee M, Oh K, Choi HK, Lee SG, Youn HJ, Lee HL, Jeong DH (2018) Subnanomolar sensitivity of filter paper-based SERS sensor for pesticide detection by hydrophobicity change of paper surface. ACS Sens 3:151–159. https://doi.org/10.1021/acssensors.7b00782

    Article  CAS  PubMed  Google Scholar 

  10. Kihara S, Chan A, In E, Taleb N, Tollemache C, Yick S, Mcgillivray DJ (2022) Detecting polystyrene nanoplastics using filter paper-based surface-enhanced raman spectroscopy. RSC Adv 12:20519–20522. https://doi.org/10.1039/d2ra03395j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Adamo CB, Poppi RJ, De Jesus DP (2021) Improving surface-enhanced raman scattering performance of gold-modified magnetic nanoparticles by using nickel-phosphorus film on polydimethylsiloxane. Microchem J 160:105704. https://doi.org/10.1016/j.microc.2020.105704

    Article  CAS  Google Scholar 

  12. Shiohara A, Langer J, Polavarapu L, Liz-Marzan LM (2014) Solution processed polydimethylsiloxane/gold nanostar flexible substrates for plasmonic sensing. Nanoscale 6:9817–9823. https://doi.org/10.1039/c4nr02648a

    Article  CAS  PubMed  Google Scholar 

  13. Zhong LB, Yin J, Zheng YM, Liu Q, Cheng XX, Luo FH (2014) Self-assembly of Au nanoparticles on PMMA template as flexible, transparent, and highly active SERS substrates. Anal Chem 86:6262–6267. https://doi.org/10.1021/ac404224f

    Article  CAS  PubMed  Google Scholar 

  14. Zhong LB, Liu Q, Wu P, Niu QF, Zhang H, Zheng YM (2018) Facile on-site aqueous pollutant monitoring using a flexible, ultralight, and robust surface-enhanced raman spectroscopy substrate: interface self-assembly of Au@Ag nanocubes on a polyvinyl chloride template. Environ Sci Technol 52:5812–5820. https://doi.org/10.1021/acs.est.7b04327

    Article  CAS  PubMed  Google Scholar 

  15. Zhang Y, Teng Y, Ren Z, Shi Q (2019) Water/Oil interfacial self-assembled gold nanoarrays modified on transparent tape for in situ surface-enhanced raman scattering. Plasmonics 14:1105–1111. https://doi.org/10.1007/s11468-018-00899-1

    Article  CAS  Google Scholar 

  16. Zhang M, Pan J, Xu X, Fu G, Zhang L, Sun P, Yan X, Liu F, Wang C, Liu X, Lu G (2022) Gold-trisoctahedra-coated capillary-based SERS platform for microsampling and sensitive detection of trace fentanyl. Anal Chem 94:4850–4858. https://doi.org/10.1021/acs.analchem.2c00157

    Article  CAS  PubMed  Google Scholar 

  17. Yu Y, Zeng P, Yang C, Gong J, Liang R, Ou Q, Zhang S (2019) Gold-nanorod-coated capillaries for the SERS-based detection of thiram. ACS Appl Nano Mater 2:598–606. https://doi.org/10.1021/acsanm.8b02075

    Article  CAS  Google Scholar 

  18. Lin S, Hasi W, Lin X, Han S, **ang T, Liang S, Wang L (2020) Lab-on-capillary platform for on-site quantitative SERS analysis of surface contaminants based on Au@4-MBA@Ag core-shell nanorods. ACS Sens 5:1465–1473. https://doi.org/10.1021/acssensors.0c00398

    Article  CAS  PubMed  Google Scholar 

  19. Shanthil M, Fathima H, George Thomas K (2017) Cost-effective plasmonic platforms: glass capillaries decorated with Ag@SiO2 nanoparticles on inner walls as SERS substrates. ACS Appl Mater Interfaces 9:19470–19477. https://doi.org/10.1021/acsami.6b12478

    Article  CAS  PubMed  Google Scholar 

  20. Kang Y, Chen W, Zhang H, Sun L, Wu T, Du Y (2018) Real-time preparation of surface enhanced raman scattering substrate for on-line analysis of aromatic molecules in capillary. Microchem J 137:15–21. https://doi.org/10.1016/j.microc.2017.09.018

    Article  CAS  Google Scholar 

  21. Zhu M, Li M, Su M, Liu J, Liu B, Ge Y, Liu H, Hu J (2021) Can “hot spots” be stable enough for surface-enhanced raman scattering? J Phys Chem C 125:13443–13448. https://doi.org/10.1021/acs.jpcc.1c03321

    Article  CAS  Google Scholar 

  22. **ao M, **e K, Dong X, Wang L, Huang C, Xu F, **ao W, ** M, Huang B, Tang Y (2019) Ultrasensitive detection of avian influenza a (H7N9) virus using surface-enhanced raman scattering-based lateral flow immunoassay strips. Anal Chim Acta 1053:139–147. https://doi.org/10.1016/j.aca.2018.11.056

    Article  CAS  PubMed  Google Scholar 

  23. Wang X, Lu A, Bai Z, Xu T (2022) A multilayer interlaced Ag nanosheet film prepared by an electrodeposition method on a PPy@PEDOT:PSS film: a strategy to prepare sensitive surface-enhanced raman scattering substrates. ACS Omega 7:9380–9387. https://doi.org/10.1021/acsomega.1c06387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wu T, Lin Y-W (2018) Surface-enhanced raman scattering active gold nanoparticle/nanohole arrays fabricated through electron beam lithography. Appl Surf Sci 435:1143–1149. https://doi.org/10.1016/j.apsusc.2017.11.213

    Article  CAS  Google Scholar 

  25. Chen J, Li Y, Huang K, Wang P, He L, Carter KR, Nugen SR (2015) Nanoimprinted patterned pillar substrates for surface-enhanced raman scattering applications. ACS Appl Mater Interfaces 7:22106–22113. https://doi.org/10.1021/acsami.5b07879

    Article  CAS  PubMed  Google Scholar 

  26. Extrand CW (2022) Meniscus formation in a vertical capillary tube. Langmuir 38:2346–2353. https://doi.org/10.1021/acs.langmuir.1c03226

    Article  CAS  PubMed  Google Scholar 

  27. Zhmud BV, Tiberg F, Hallstensson K (2000) Dynamics of capillary rise. J Colloid Interface Sci 228:263–269. https://doi.org/10.1006/jcis.2000.6951

    Article  CAS  PubMed  Google Scholar 

  28. Garcia Nunez C, Navaraj WT, Liu F, Shakthivel D, Dahiya R (2018) Large-area self-assembly of silica microspheres/nanospheres by temperature-assisted dip-coating. ACS Appl Mater Interfaces 10:3058–3068. https://doi.org/10.1021/acsami.7b15178

    Article  CAS  PubMed  Google Scholar 

  29. Vysotskii VV, Roldughin VI, Uryupina OY, Senchikhin IN, Stuchebryukov SD, Zaitseva AV (2018) The effect of evaporation temperature on the structure and conductivity of thin films obtained by the moving meniscus method from nanodispersions of silver particles. Colloid Journal 80:152–157. https://doi.org/10.1134/s1061933x18020126

    Article  CAS  Google Scholar 

  30. Liu Y, Huang Z, Zhou F, Lei X, Yao B, Meng G, Mao Q (2016) Highly sensitive fibre surface-enhanced raman scattering probes fabricated using laser-induced self-assembly in a meniscus. Nanoscale 8:10607–10614. https://doi.org/10.1039/c5nr06773a

    Article  CAS  PubMed  Google Scholar 

  31. ** M, Wang X, Russel M, Shan J (2022) Towards the rapid detection of multiple antibiotics in eggs by surface-enhanced raman spectroscopy coupled with hollow fiber micro-extraction. Microchem J 181:107743. https://doi.org/10.1016/j.microc.2022.107743

    Article  CAS  Google Scholar 

  32. Polansky J, Kaya T (2016) Stability of an evaporating meniscus: part I – theoretical analysis. Int J Therm Sci 107:209–219. https://doi.org/10.1016/j.ijthermalsci.2016.03.021

    Article  Google Scholar 

  33. Yuan Z-Y, Ren T-Z, Azioune A, Pireaux J-J, Su B-L (2005) Marvelous self-assembly of hierarchically nanostructured porous zirconium phosphate solid acids with high thermal stability. Catal Today 105:647–654. https://doi.org/10.1016/j.cattod.2005.06.038

    Article  CAS  Google Scholar 

  34. Jiang Y, Sun D-W, Pu H, Wei Q (2019) Ultrasensitive analysis of kanamycin residue in milk by SERS-based aptasensor. Talanta 197:151–158. https://doi.org/10.1016/j.talanta.2019.01.015

    Article  CAS  PubMed  Google Scholar 

  35. Mikac L, Rigó I, Himics L, Tolić A, Ivanda M, Veres M (2023) Surface-enhanced raman spectroscopy for the detection of microplastics. Appl Surf Sci 608:155239. https://doi.org/10.1016/j.apsusc.2022.155239

    Article  CAS  Google Scholar 

  36. Zhou X-X, Liu R, Hao L-T, Liu J-F (2021) Identification of polystyrene nanoplastics using surface enhanced raman spectroscopy. Talanta 221:121552. https://doi.org/10.1016/j.talanta.2020.121552

    Article  CAS  PubMed  Google Scholar 

  37. Meilakhs AP, Koniakhin SV (2017) New explanation of raman peak redshift in nanoparticles. Superlattice Microst 110:319–323. https://doi.org/10.1016/j.spmi.2017.08.010

    Article  CAS  Google Scholar 

  38. Rastogi V, Chaurasia S, Rao U, Sijoy CD, Mishra V, Kumar M, Deo MN, Chaturvedi S, Sharma SM (2017) Raman spectroscopy of laser shocked polystyrene. J Raman Spectrosc 48:458–464. https://doi.org/10.1002/jrs.5046

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China [grant number: 31701691] for financial supporting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiajia Shan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 26.8 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Li, D., Li, Y. et al. Synthesis of a capillary surface-enhanced Raman scattering substrate integrating sampling and detection based on meniscus self-assembled technology. Microchim Acta 190, 411 (2023). https://doi.org/10.1007/s00604-023-05981-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05981-y

Keywords

Navigation