Log in

Low-cost, portable, on-site fluorescent detection of As(III) by a paper-based microfluidic device based on aptamer and smartphone imaging

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A turn-on fluorescent aptasensor based on a paper-based microfluidic chip was developed to detect arsenite via aptamer competition strategy and smartphone imaging. The chip was prepared by wax-printing hydrophilic channels on filter paper. It is portable, low-cost, and environmentally friendly. Double-stranded DNA consisting of aptamer and fluorescence-labeled complementary strands was immobilized on the reaction zone of the paper chip. Due to the specific strong binding between aptamer and arsenite, the fluorescent complementary strand was squeezed out and driven by capillary force to the detection area of the paper chip, so that the fluorescent signal arose in the detection area under the excitation wavelength of 488 nm. Arsenite can be quantified by using smartphone imaging and RGB image analysis. Under the optimal conditions, the paper-based microfluidic aptasensor exhibited excellent linear response over a wide range of 1 to 1000 nM, with a detection limit as low as 0.96 nM (3σ).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Nie ZY, Hu LF, Zhang DC, Qian YT, Long YY, Shen DS, Fang CR, Yao J, Liu JB (2021) Drivers and ecological consequences of arsenite detoxification in aged semi-aerobic landfill. J Hazard Mater 420:126597. https://doi.org/10.1016/j.jhazmat.2021.126597

    Article  CAS  PubMed  Google Scholar 

  2. Gupta A, Verma NC, Khan S, Nandi CK (2016) Carbon dots for naked eye colorimetric ultrasensitive arsenic and glutathione detection. Biosens Bioelectron 81:465–472. https://doi.org/10.1016/j.bios.2016.03.018

    Article  CAS  PubMed  Google Scholar 

  3. Moghimi N, Mohapatra M, Leung KT (2015) Bimetallic nanoparticles for arsenic detection. Anal Chem 87:5546–5552. https://doi.org/10.1021/ac504116d

    Article  CAS  PubMed  Google Scholar 

  4. Bose KK, Tatsumi K, Strauss BS (1980) Apurinic/apyrimidinic endonuclease sensitive sites as intermediates in the in vitro degradation of deoxyribonucleic acid by neocarzinostatin. Biochemistry 19:4761–4766. https://doi.org/10.1021/bi00562a007

    Article  CAS  PubMed  Google Scholar 

  5. Wang M, He J, Luo J, Hu J, Hou X (2022) Ultrasensitive determination and non-chromatographic speciation of inorganic arsenic in foods and water by photochemical vapor generation-ICPMS using CdS/MIL-100(Fe) as adsorbent and photocatalyst. Food Chem 375:131841. https://doi.org/10.1016/j.foodchem.2021.131841

    Article  CAS  PubMed  Google Scholar 

  6. Costa BE, Coelho NMM (2021) Selective determination of As(III) and total inorganic arsenic in rice sample using in-situ μ-sorbent formation solid phase extraction and FI-HG AAS. J Food Compost Anal 95:103686. https://doi.org/10.1016/j.jfca.2020.103686

  7. Lu XP, Yang XA, Liu L, Hu HH, Zhang WB (2017) Selective and sensitive determination of As(III) and tAs in Chinese herbal medicine samples using L-cysteine modified carbon paste electrode-based electrolytic hydride generation and AFS analysis. Talanta 165:258–266. https://doi.org/10.1016/j.talanta.2016.12.070

    Article  CAS  PubMed  Google Scholar 

  8. **a Y, Si J, Li Z (2016) Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: a review. Biosens Bioelectron 77:774–789. https://doi.org/10.1016/j.bios.2015.10.032

    Article  CAS  PubMed  Google Scholar 

  9. Sun GQ, Wang PP, Ge SG, Ge L, Yu JH, Yan M (2014) Photoelectrochemical sensor for pentachlorophenol on microfluidic paper-based analytical device based on the molecular imprinting technique. Biosens Bioelectron 56:97–103. https://doi.org/10.1016/j.bios.2014.01.001

    Article  CAS  PubMed  Google Scholar 

  10. Kong Q, Wang Y, Zhang L, Ge S, Yu J (2017) A novel microfluidic paper-based colorimetric sensor based on molecularly imprinted polymer membranes for highly selective and sensitive detection of bisphenol A. Sensors Actuat B Chem 243:130–136. https://doi.org/10.1016/j.snb.2016.11.146

    Article  CAS  Google Scholar 

  11. Liana DD, Raguse B, Gooding JJ, Chow E (2012) Recent advances in paper-based sensors. Sensors 12:11505–11526. https://doi.org/10.3390/s120911505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li X, Ballerini DR, Shen W (2012) A perspective on paper-based microfluidics: current status and future trends. Biomicrofluidics 6:11301–1130113. https://doi.org/10.1063/1.3687398

    Article  CAS  PubMed  Google Scholar 

  13. Taghdisi SM, Danesh NM, Ramezani M, Sarreshtehdar Emrani A, Abnous K (2018) A simple and rapid fluorescent aptasensor for ultrasensitive detection of arsenic based on target-induced conformational change of complementary strand of aptamer and silica nanoparticles. Sensors Actuat B Chem 256:472–478. https://doi.org/10.1016/j.snb.2017.10.129

    Article  CAS  Google Scholar 

  14. Zeng L, Zhou D, Gong J, Liu C, Chen J (2019) Highly sensitive aptasensor for trace arsenic(III) detection using DNAzyme as the biocatalytic amplifier. Anal Chem 91:1724–1727. https://doi.org/10.1021/acs.analchem.8b05466

    Article  CAS  PubMed  Google Scholar 

  15. Cui L, Wu J, Ju H (2016) Label-free signal-on aptasensor for sensitive electrochemical detection of arsenite. Biosens Bioelectron 79:861–865. https://doi.org/10.1016/j.bios.2016.01.010

    Article  CAS  PubMed  Google Scholar 

  16. Ning Y, Hu J, Lu F (2020) Aptamers used for biosensors and targeted therapy. Biomed Pharmacother 132:110902. https://doi.org/10.1016/j.biopha.2020.110902

  17. Wang T, Chen C, Larcher LM, BarreroRA VRN (2019) Three decades of nucleic acid aptamer technologies: lessons learned, progress and opportunities on aptamer development. Biotechnol Adv 37:28–50. https://doi.org/10.1016/j.biotechadv.2018.11.001

    Article  CAS  PubMed  Google Scholar 

  18. Matsunaga K, Okuyama Y, Hirano R, Okabe S, Takahashi M, Satoha H (2019) Development of a simple analytical method to determine arsenite using a DNA aptamer and gold nanoparticles. Chemosphere 224:538–543. https://doi.org/10.1016/j.chemosphere.2019.02.182

    Article  CAS  PubMed  Google Scholar 

  19. Pan J, Li Q, Zhou D, Chen J (2018) Ultrasensitive aptamer biosensor for arsenic (III) detection based on label-free triple-helix molecular switch and fluorescence sensing platform. Talanta 189:370–376. https://doi.org/10.1016/j.talanta.2018.07.024

    Article  CAS  PubMed  Google Scholar 

  20. Tang RH, Liu LN, Zhang SF, He XC, Li XJ, Xu F, Ni YH, Li F (2019) A review on advances in methods for modification of paper supports for use in point-of-care testing. Microchim Acta 186:521. https://doi.org/10.1007/s00604-019-3626-z

    Article  CAS  Google Scholar 

  21. Wei S, Li J, He J, Zhao W, Wang F, Song X, Xu K, Wang J, Zhao C (2020) Paper chip-based colorimetric assay for detection of Salmonella typhimurium by combining aptamer-modified Fe(3)O(4)@Ag nanoprobes and urease activity inhibition. Microchim Acta 187:554. https://doi.org/10.1007/s00604-020-04537-8

    Article  CAS  Google Scholar 

  22. Qin XX, Liu JJ, Zhang Z, Li JH, Yuan L, Zhang ZY, Chen LX (2021) Microfluidic paper-based chips in rapid detection: current status, challenges, and perspectives. TrAC Trends Anal Chem 143:116371. https://doi.org/10.1016/j.trac.2021.116371

  23. He M, Li Z, Ge Y, Liu Z (2016) Portable upconversion nanoparticles-based paper device for field testing of drug abuse. Anal Chem 88:1530–1534. https://doi.org/10.1021/acs.analchem.5b04863

    Article  CAS  PubMed  Google Scholar 

  24. Monisha, Shrivas K, Kant T, Patel S, Devi R, Dahariya NS, Pervez S, Deb MK, Rai MK, Rai J (2021) Inkjet-printed paper-based colorimetric sensor coupled with smartphone for determination of mercury (Hg(2+)). J Hazard Mater 414:125440. https://doi.org/10.1016/j.jhazmat.2021.125440

    Article  CAS  PubMed  Google Scholar 

  25. Yuan M, Zhang QQ, Song ZH, Ye T, Yu JS, Cao H, Xu F (2019) Piezoelectric arsenite aptasensor based on the use of a self-assembled mercaptoethylamine monolayer and gold nanoparticles. Microchim Acta 186:268. https://doi.org/10.1007/s00604-019-3373-1

    Article  CAS  Google Scholar 

  26. Li JW, Tyagi A, Huang T, Liu H, Sun HL, You JW, Alam MM, Li XR, Gao ZL (2022) Aptasensors based on graphene field-effect transistors for arsenite detection. ACS Appl Nano Mater 5:12848–12854. https://doi.org/10.1021/acsanm.2c02711

    Article  CAS  Google Scholar 

  27. Kaur H, Kumar R, Babu JN, Mittal S (2015) Advances in arsenic biosensor development–a comprehensive review. Biosens Bioelectron 63:533–545. https://doi.org/10.1016/j.bios.2014.08.003

    Article  CAS  PubMed  Google Scholar 

  28. Wang L, Musile G, McCord BR (2018) An aptamer-based paper microfluidic device for the colorimetric determination of cocaine. Electrophoresis 39:470–475. https://doi.org/10.1002/elps.201700254

    Article  CAS  PubMed  Google Scholar 

  29. Scida K, Li B, Ellington AD, Crooks RM (2013) DNA detection using origami paper analytical devices. Anal Chem 85:9713–9720. https://doi.org/10.1021/ac402118a

    Article  CAS  PubMed  Google Scholar 

  30. Gan Y, Liang T, Hu Q, Zhong L, Wang X, Wan H, Wang P (2020) In-situ detection of cadmium with aptamer functionalized gold nanoparticles based on smartphone-based colorimetric system. Talanta 208:120231. https://doi.org/10.1016/j.talanta.2019.120231

    Article  CAS  PubMed  Google Scholar 

  31. Liu S, Li Y, Yang C, Lu L, Nie Y, Tian X (2020) Portable smartphone-integrated paper sensors for fluorescence detection of As(III) in groundwater. R Soc Open Sci 7:201500. https://doi.org/10.1098/rsos.201500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mohammadi S, Mohammadi S, Salimi A, Ahmadi R (2022) A chelation-enhanced fluorescence assay using thiourea capped carbonaceous fluorescent nanoparticles for As(III) detection in water samples. J Fluoresc 32:145–153. https://doi.org/10.1007/s10895-021-02834-w

    Article  CAS  PubMed  Google Scholar 

  33. Ge K, Liu J, Wang P, Fang G, Zhang D, Wang S (2019) Near-infrared-emitting persistent luminescent nanoparticles modified with gold nanorods as multifunctional probes for detection of arsenic(III). Microchim Acta 186:197. https://doi.org/10.1007/s00604-019-3294-z

    Article  CAS  Google Scholar 

  34. Nguyen DK, Jang CH (2020) Label-free liquid crystal-based detection of As(III) ions using ssDNA as a recognition probe. Microchem J 156:104834. https://doi.org/10.1016/j.microc.2020.104834

Download references

Funding

This work is supported by the Shanghai Agriculture Applied Technology Development Program (No. 2020–02-08–00-07-F01477) and the Shanghai Committee of Science and Technology (No. 18391901200), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Xu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1. A fluorescent paper-based microfluidic device based on smartphone imaging was developed for the on-site detection of arsenite.

2. The device was portable, low-cost, and environmentally friendly.

3. The device displayed a low detection limit of 0.96 nM in arsenite detection.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 366 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, M., Li, C., Wang, M. et al. Low-cost, portable, on-site fluorescent detection of As(III) by a paper-based microfluidic device based on aptamer and smartphone imaging. Microchim Acta 190, 109 (2023). https://doi.org/10.1007/s00604-023-05693-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05693-3

Keywords

Navigation