Log in

Nanostructured poly(thiophene acetic acid)/Au/poly(methylene blue) interface for electrochemical immunosensing of p53 protein

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A poly(thiophene acetic acid)/Au/poly(methylene blue) nanostructured interface was electrochemically assembled step-by-step on screen-printed carbon electrodes (SPCE) for label-free detection of p53 protein. The initial electrical conductive properties of the polymeric interface were increased with an additional layer of poly(methylene blue) electropolymerized in the presence of gold nanoparticles. The nano-immunosensing architecture was prepared by covalent immobilization of anti-p53 antibodies as bioreceptors through the poly(thiophene acetic acid) moieties. The nano-immunosensor assembly was extensively characterized by ultraviolet–visible spectrophotometry, dynamic and electrophoretic light scattering, scanning electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, atomic force microscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. Under optimal conditions, p53 was specifically and selectively detected by square wave voltammetry in a linear range between 1 and 100 ng mL−1 with a limit of detection of 0.65 ng mL−1. In addition, the electrochemical nano-immunosensor detected p53 in spiked human serum samples and colorectal cancer cell lysates, and the results were validated with a standard spectrophotometric method using a paired samples t test, which did not exhibit significant differences between both methods. The resultant p53 nano-immunosensor is simple to assemble, robust, and has the potential for point-of-care biomarker detection applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aydemir N, Malmström J, Travas-Sejdic J (2016) Conducting polymer based electrochemical biosensors. Phys Chem Chem Phys 18:8264–8277. https://doi.org/10.1039/c5cp06830d

    Article  CAS  PubMed  Google Scholar 

  2. Ibanez JG, Rincón ME, Gutierrez-Granados S et al (2018) Conducting polymers in the fields of energy, environmental remediation, and chemical–chiral sensors. Chem Rev 118:4731–4816. https://doi.org/10.1021/acs.chemrev.7b00482

    Article  CAS  PubMed  Google Scholar 

  3. Cruz-Pacheco AF, Quinchia J, Orozco J (2022) Cerium oxide-doped PEDOT nanocomposite for label-free electrochemical immunosensing of anti-p53 autoantibodies. Microchim Acta 189:228. https://doi.org/10.1007/s00604-022-05322-5

    Article  CAS  Google Scholar 

  4. Kakhki S, Barsan MM, Shams E, Brett CMA (2012) Development and characterization of poly(3,4-ethylenedioxythiophene)-coated poly(methylene blue)-modified carbon electrodes. Synth Met 161:2718–2726. https://doi.org/10.1016/j.synthmet.2011.10.007

    Article  CAS  Google Scholar 

  5. Abad-Gil L, Brett CMA (2022) Poly(methylene blue)-ternary deep eutectic solvent/Au nanoparticle modified electrodes as novel electrochemical sensors: optimization, characterization and application. Electrochim Acta 434:141295. https://doi.org/10.1016/j.electacta.2022.141295

    Article  CAS  Google Scholar 

  6. Qin J, Cho M, Lee Y (2019) Ultrasensitive detection of amyloid-β using cellular prion protein on the highly conductive Au nanoparticles-poly(3,4-ethylene dioxythiophene)-poly(thiophene-3-acetic acid) composite electrode. Anal Chem 91:11259–11265. https://doi.org/10.1021/acs.analchem.9b02266

    Article  CAS  PubMed  Google Scholar 

  7. Promsuwan K, Meng L, Suklim P et al (2020) Bio-PEDOT: modulating carboxyl moieties in poly(3,4-ethylenedioxythiophene) for enzyme-coupled bioelectronic interfaces. ACS Appl Mater Interfaces 12:39841–39849. https://doi.org/10.1021/acsami.0c10270

    Article  CAS  PubMed  Google Scholar 

  8. Attallah AM, Abdel-Aziz MM, El-Sayed AM, Tabll AA (2003) Detection of serum p53 protein in patients with different gastrointestinal cancers. Cancer Detect Prev 27:127–131. https://doi.org/10.1016/S0361-090X(03)00024-2

    Article  CAS  PubMed  Google Scholar 

  9. Deepa Nohwal B, Chaudhary R, Pundir CS (2022) Amperometric detection of tumor suppressor protein p53 via pencil graphite electrode for fast cancer diagnosis. Anal Biochem 639:114528. https://doi.org/10.1016/j.ab.2021.114528

    Article  CAS  PubMed  Google Scholar 

  10. Aydın M, Aydın EB, Sezgintürk MK (2018) A disposable immunosensor using ITO based electrode modified by a star-shaped polymer for analysis of tumor suppressor protein p53 in human serum. Biosens Bioelectron 107:1–9. https://doi.org/10.1016/j.bios.2018.02.017

    Article  CAS  PubMed  Google Scholar 

  11. Quinchia J, Echeverri D, Cruz-Pacheco AF et al (2020) Electrochemical biosensors for determination of colorectal tumor biomarkers. Micromachines 11:1–46. https://doi.org/10.3390/MI11040411

    Article  Google Scholar 

  12. Rodrigues NR, Rowan A, Smith ME et al (1990) p53 mutations in colorectal cancer. Proc Natl Acad Sci 87:7555–7559. https://doi.org/10.1073/pnas.87.19.7555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Esokkiya A, Sudalaimani S, Sanjeev Kumar K et al (2021) Poly(methylene blue)-based electrochemical platform for label-free sensing of acrylamide. ACS Omega 6:9528–9536. https://doi.org/10.1021/acsomega.0c06315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Barsan MM, Pinto EM, Brett CMA (2011) Methylene blue and neutral red electropolymerisation on AuQCM and on modified AuQCM electrodes: an electrochemical and gravimetric study. Phys Chem Chem Phys 13:5462–5471. https://doi.org/10.1039/C1CP20418A

    Article  CAS  PubMed  Google Scholar 

  15. Barsan MM, Pinto EM, Brett CMA (2008) Electrosynthesis and electrochemical characterisation of phenazine polymers for application in biosensors. Electrochim Acta 53:3973–3982. https://doi.org/10.1016/j.electacta.2007.10.012

    Article  CAS  Google Scholar 

  16. Marinho MIC, Cabral MF, Mazo LH (2012) Is the poly (methylene blue)-modified glassy carbon electrode an adequate electrode for the simple detection of thiols and amino acid-based molecules? J Electroanal Chem 685:8–14. https://doi.org/10.1016/j.jelechem.2012.08.023

    Article  CAS  Google Scholar 

  17. Verma S, Singh A, Shukla A et al (2017) Anti-IL8/AuNPs-rGO/ITO as an immunosensing platform for noninvasive electrochemical detection of oral cancer. ACS Appl Mater Interfaces 9:27462–27474. https://doi.org/10.1021/acsami.7b06839

    Article  CAS  PubMed  Google Scholar 

  18. Brett CMA (2022) Electrochemical impedance spectroscopy in the characterisation and application of modified electrodes for electrochemical sensors and biosensors. Molecules 27:1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bertok T, Lorencova L, Chocholova E et al (2019) Electrochemical impedance spectroscopy based biosensors: mechanistic principles, analytical examples and challenges towards commercialization for assays of protein cancer biomarkers. ChemElectroChem 6:989–1003. https://doi.org/10.1002/celc.201800848

    Article  CAS  Google Scholar 

  20. Echeverri D, Orozco J (2022) β-1,4-Galactosyltransferase-V colorectal cancer biomarker immunosensor with label-free electrochemical detection. Talanta 243:123337. https://doi.org/10.1016/j.talanta.2022.123337

    Article  CAS  PubMed  Google Scholar 

  21. González-Sánchez MI, Gómez-Monedero B, Agrisuelas J et al (2019) Electrochemical performance of activated screen printed carbon electrodes for hydrogen peroxide and phenol derivatives sensing. J Electroanal Chem 839:75–82. https://doi.org/10.1016/j.jelechem.2019.03.026

    Article  CAS  Google Scholar 

  22. Galdino FE, Smith JP, Kwamou SI et al (2015) Graphite screen-printed electrodes applied for the accurate and reagentless sensing of pH. Anal Chem 87:11666–11672. https://doi.org/10.1021/acs.analchem.5b01236

    Article  CAS  PubMed  Google Scholar 

  23. Echeverri D, Cruz-Pacheco AF, Orozco J (2023) Capacitive nanobiosensing of β-1,4-galactosyltransferase-V colorectal cancer biomarker. Sensors Actuators B Chem 374:132784. https://doi.org/10.1016/j.snb.2022.132784

    Article  CAS  Google Scholar 

  24. Rashed MA, Faisal M, Ahmed J et al (2022) Highly sensitive and selective amperometric hydrazine sensor based on Au nanoparticle-decorated conducting polythiophene prepared via oxidative polymerization and photo-reduction techniques. J Saudi Chem Soc 26:101480. https://doi.org/10.1016/j.jscs.2022.101480

    Article  CAS  Google Scholar 

  25. Andreoli E, Rooney DA, Redington W et al (2011) Electrochemical deposition of hierarchical micro/nanostructures of copper hydroxysulfates on polypyrrole−polystyrene sulfonate films. J Phys Chem C 115:8725–8734. https://doi.org/10.1021/jp200465n

    Article  CAS  Google Scholar 

  26. Eby DM, Artyushkova K, Paravastu AK, Johnson GR (2012) Probing the molecular structure of antimicrobial peptide-mediated silica condensation using X-ray photoelectron spectroscopy. J Mater Chem 22:9875–9883. https://doi.org/10.1039/C2JM30837A

    Article  CAS  Google Scholar 

  27. Elshafey R, Siaj M, Tavares AC (2016) Au nanoparticle decorated graphene nanosheets for electrochemical immunosensing of p53 antibodies for cancer prognosis. Analyst 141:2733–2740. https://doi.org/10.1039/c6an00044d

    Article  CAS  PubMed  Google Scholar 

  28. Björneholm O, Federmann F, Kakar S, Möller T (1999) Between vapor and ice: free water clusters studied by core level spectroscopy. J Chem Phys 111:546–550. https://doi.org/10.1063/1.479334

    Article  Google Scholar 

  29. Schroeder HW, Cavacini L (2010) Structure and function of immunoglobulins. J Allergy Clin Immunol 125:S41–S52. https://doi.org/10.1016/j.jaci.2009.09.046

    Article  PubMed  PubMed Central  Google Scholar 

  30. Prasad KS, Chen J-C, Ay C, Zen J-M (2007) Mediatorless catalytic oxidation of NADH at a disposable electrochemical sensor. Sensors Actuators B Chem 123:715–719. https://doi.org/10.1016/j.snb.2006.10.012

    Article  CAS  Google Scholar 

  31. Velický M, Toth PS, Woods CR et al (2019) Electrochemistry of the basal plane versus edge plane of graphite revisited. J Phys Chem C 123:11677–11685. https://doi.org/10.1021/acs.jpcc.9b01010

    Article  CAS  Google Scholar 

  32. Li C, Huang Y, Lai K et al (2016) Analysis of trace methylene blue in fish muscles using ultra-sensitive surface-enhanced Raman spectroscopy. Food Control 65:99–105. https://doi.org/10.1016/j.foodcont.2016.01.017

    Article  CAS  Google Scholar 

  33. Lorenzen AL, dos Santos AM, dos Santos LP et al (2022) PEDOT-AuNPs-based impedimetric immunosensor for the detection of SARS-CoV-2 antibodies. Electrochim Acta 404:139757. https://doi.org/10.1016/j.electacta.2021.139757

    Article  CAS  PubMed  Google Scholar 

  34. Pfaffen V, Ortiz PI, Córdoba de Torresi SI, Torresi RM (2010) On the pH dependence of electroactivity of poly(methylene blue) films. Electrochim Acta 55:1766–1771. https://doi.org/10.1016/j.electacta.2009.10.062

    Article  CAS  Google Scholar 

  35. Gunda NSK, Singh M, Norman L et al (2014) Optimization and characterization of biomolecule immobilization on silicon substrates using (3-aminopropyl)triethoxysilane (APTES) and glutaraldehyde linker. Appl Surf Sci 305:522–530. https://doi.org/10.1016/j.apsusc.2014.03.130

    Article  CAS  Google Scholar 

  36. Mitsakakis K, Lousinian S, Logothetidis S (2007) Early stages of human plasma proteins adsorption probed by atomic force microscope. Biomol Eng 24:119–124. https://doi.org/10.1016/j.bioeng.2006.05.013

    Article  CAS  PubMed  Google Scholar 

  37. Pedrero M, Manuel de Villena FJ, Muñoz-San Martín C et al (2016) Disposable amperometric immunosensor for the determination of human P53 protein in cell lysates using magnetic micro-carriers. Biosensors 6:56. https://doi.org/10.3390/bios6040056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yeo J, Park J-Y, Bae WJ et al (2009) Label-free electrochemical detection of the p53 core domain protein on its antibody immobilized electrode. Anal Chem 81:4770–4777. https://doi.org/10.1021/ac900301h

    Article  CAS  PubMed  Google Scholar 

  39. García-Miranda Ferrari A, Rowley-Neale SJ, Banks CE (2021) Screen-printed electrodes: transitioning the laboratory in-to-the field. Talanta Open 3:100032. https://doi.org/10.1016/j.talo.2021.100032

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Ruta N Complex and EPM for hosting the Max Planck Tandem Groups. Finally, we thank Dr. Ernesto Moreno and Dr. Marcela Rubio from the University of Medellín for donating cell lines.

Funding

The work has been funded by Minciencias, Mineducación, MINCIT, and ICETEX through the Program Ecosistema Científico Cod. FP44842-211–2018, project number 58536. J.O. thanks support from the University of Antioquia and the Max Planck Society through the cooperation agreement 566–1, 2014.

Author information

Authors and Affiliations

Authors

Contributions

Andrés F. Cruz-Pacheco, conceptualization, methodology, formal analysis, investigation, data curation, and writing, original draft. Jennifer Quinchia, investigation, data curation, and writing, original draft. Jahir Orozco, conceptualization; formal analysis; writing, review and editing; supervision, project administration; and funding acquisition.

Corresponding author

Correspondence to Jahir Orozco.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3.17 mb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruz-Pacheco, A.F., Quinchia, J. & Orozco, J. Nanostructured poly(thiophene acetic acid)/Au/poly(methylene blue) interface for electrochemical immunosensing of p53 protein. Microchim Acta 190, 136 (2023). https://doi.org/10.1007/s00604-023-05683-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05683-5

Keywords

Navigation