Log in

Cerium oxide–doped PEDOT nanocomposite for label-free electrochemical immunosensing of anti-p53 autoantibodies

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A label-free nanoimmunosensor is reported based on p53/CeO2/PEDOT nanobiocomposite-decorated screen-printed gold electrodes (SPAuE) for the electrochemical detection of anti-p53 autoantibodies. CeO2 nanoparticles (NPs) were synthesized and stabilized with cyanopropyltriethoxysilane by a soft chemistry method. The nanoimmunosensing architecture was prepared by in situ electropolymerization of 3,4-ethylenedioxythiophene (EDOT) on SPAuE in the presence of CeO2 NPs. The CeO2 NPs and Ce/PEDOT/SPAuE were characterized by scanning and transmission electron microscopy, dynamic and electrophoretic light scattering, ultraviolet–visible spectrophotometry, X-ray diffraction, Fourier-transform infrared spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. Ce/PEDOT/SPAuE was biofunctionalized with p53 antigen by covalent bonding for the label-free determination of anti-p53 autoantibodies by differential pulse voltammetry. The nanobiocomposite-based nanoimmunosensor detected anti-p53 autoantibodies in a linear range from 10 to 1000 pg mL−1, with a limit of detection (LOD) of 3.2 pg mL−1. The nanoimmunosensor offered high specificity, selectivity, and long-term storage stability with great potential to detect anti-p53 autoantibodies in serum samples. Overall, incorporating organo-functional nanoparticles into polymeric matrices can provide a simple-to-assemble, rapid, and ultrasensitive approach for on-site screening of anti-p53 autoantibodies and other disease-related biomarkers with low sample volumes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tan HT, Low J, Lim SG, Chung MCM (2009) Serum autoantibodies as biomarkers for early cancer detection. FEBS J 276:6880–6904. https://doi.org/10.1111/j.1742-4658.2009.07396.x

    Article  CAS  PubMed  Google Scholar 

  2. Suppiah A, Greenman J (2013) Clinical utility of anti-p53 auto-antibody: systematic review and focus on colorectal cancer. World J Gastroenterol 19:4651–4670. https://doi.org/10.3748/wjg.v19.i29.4651

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Portefaix J-M, Fanutti C, Granier C et al (2002) Detection of anti-p53 antibodies by ELISA using p53 synthetic or phage-displayed peptides. J Immunol Methods 259:65–75. https://doi.org/10.1016/S0022-1759(01)00494-X

    Article  CAS  PubMed  Google Scholar 

  4. Adeniyi O, Sicwetsha S, Adesina A, Mashazi P (2021) Immunoassay detection of tumor-associated autoantibodies using protein G bioconjugated to nanomagnet-silica decorated with Au@Pd nanoparticles. Talanta 226:122127. https://doi.org/10.1016/j.talanta.2021.122127

    Article  CAS  PubMed  Google Scholar 

  5. Adeniyi OK, Ngqinambi A, Mashazi PN (2020) Ultrasensitive detection of anti-p53 autoantibodies based on nanomagnetic capture and separation with fluorescent sensing nanobioprobe for signal amplification. Biosens Bioelectron 170:112640. https://doi.org/10.1016/j.bios.2020.112640

    Article  CAS  PubMed  Google Scholar 

  6. Lin Y-H, Wu C-C, Chen W-L, Chang K-P (2020) Anti-p53 autoantibody detection in automatic glass capillary immunoassay platform for screening of oral cavity squamous cell carcinoma. Sensors 20:971. https://doi.org/10.3390/s20040971

    Article  CAS  PubMed Central  Google Scholar 

  7. Elshafey R, Siaj M, Tavares AC (2016) Au nanoparticle decorated graphene nanosheets for electrochemical immunosensing of p53 antibodies for cancer prognosis. Analyst 141:2733–2740. https://doi.org/10.1039/c6an00044d

    Article  CAS  PubMed  Google Scholar 

  8. García-Miranda Ferrari A, Rowley-Neale SJ, Banks CE (2021) Screen-printed electrodes: transitioning the laboratory in-to-the field. Talanta Open 3:100032. https://doi.org/10.1016/j.talo.2021.100032

    Article  Google Scholar 

  9. Sabaté del Río J, Henry OYF, Jolly P, Ingber DE (2019) An antifouling coating that enables affinity-based electrochemical biosensing in complex biological fluids. Nat Nanotechnol 14:1143–1149. https://doi.org/10.1038/s41565-019-0566-z

    Article  CAS  PubMed  Google Scholar 

  10. Fernández-Sánchez C, Pellicer E, Orozco J et al (2009) Plasma-activated multi-walled carbon nanotube–polystyrene composite substrates for biosensing. Nanotechnology 20:335501. https://doi.org/10.1088/0957-4484/20/33/335501

    Article  CAS  PubMed  Google Scholar 

  11. Mendoza E, Orozco J, Jiménez-Jorquera C et al (2008) Scalable fabrication of immunosensors based on carbon nanotube polymer composites. Nanotechnology 19:75102. https://doi.org/10.1088/0957-4484/19/7/075102

    Article  CAS  Google Scholar 

  12. Cui M, Song Z, Wu Y et al (2016) A highly sensitive biosensor for tumor maker alpha fetoprotein based on poly(ethylene glycol) doped conducting polymer PEDOT. Biosens Bioelectron 79:736–741. https://doi.org/10.1016/j.bios.2016.01.012

    Article  CAS  PubMed  Google Scholar 

  13. Wang W, Han R, Chen M, Luo X (2021) Antifouling peptide hydrogel based electrochemical biosensors for highly sensitive detection of cancer biomarker HER2 in human serum. Anal Chem 93:7355–7361. https://doi.org/10.1021/acs.analchem.1c01350

    Article  CAS  PubMed  Google Scholar 

  14. Jolly P, Miodek A, Yang D-K et al (2016) Electro-engineered polymeric films for the development of sensitive aptasensors for prostate cancer marker detection. ACS Sensors 1:1308–1314. https://doi.org/10.1021/acssensors.6b00443

    Article  CAS  Google Scholar 

  15. Aydemir N, Malmström J, Travas-Sejdic J (2016) Conducting polymer based electrochemical biosensors. Phys Chem Chem Phys 18:8264–8277. https://doi.org/10.1039/c5cp06830d

    Article  CAS  PubMed  Google Scholar 

  16. Fenoy GE, Azzaroni O, Knoll W, Marmisollé WA (2021) Functionalization strategies of PEDOT and PEDOT:PSS films for organic bioelectronics applications. Chemosensors 9:212. https://doi.org/10.3390/chemosensors9080212

    Article  CAS  Google Scholar 

  17. Promsuwan K, Meng L, Suklim P et al (2020) Bio-PEDOT: modulating carboxyl moieties in poly(3,4-ethylenedioxythiophene) for enzyme-coupled bioelectronic interfaces. ACS Appl Mater Interfaces 12:39841–39849. https://doi.org/10.1021/acsami.0c10270

    Article  CAS  PubMed  Google Scholar 

  18. Wang W, Cui M, Song Z, Luo X (2016) An antifouling electrochemical immunosensor for carcinoembryonic antigen based on hyaluronic acid doped conducting polymer PEDOT. RSC Adv 6:88411–88416. https://doi.org/10.1039/c6ra19169j

    Article  CAS  Google Scholar 

  19. Lin P, Chai F, Zhang R et al (2016) Electrochemical synthesis of poly(3,4-ethylenedioxythiophene) doped with gold nanoparticles, and its application to nitrite sensing. Microchim Acta 183:1235–1241. https://doi.org/10.1007/s00604-016-1751-5

    Article  CAS  Google Scholar 

  20. Hartati YW, Letelay LK, Gaffar S et al (2020) Cerium oxide-monoclonal antibody bioconjugate for electrochemical immunosensing of HER2 as a breast cancer biomarker. Sens Bio-Sensing Res 27:100316. https://doi.org/10.1016/j.sbsr.2019.100316

    Article  Google Scholar 

  21. Sappia LD, Piccinini E, Marmisollé W et al (2017) Integration of biorecognition elements on PEDOT platforms through supramolecular interactions. Adv Mater Interfaces 4:1–11. https://doi.org/10.1002/admi.201700502

    Article  CAS  Google Scholar 

  22. Sonuç Karaboğa MN, Sezgintürk MK (2018) A novel silanization agent based single used biosensing system: detection of C-reactive protein as a potential Alzheimer’s disease blood biomarker. J Pharm Biomed Anal 154:227–235. https://doi.org/10.1016/j.jpba.2018.03.016

    Article  CAS  PubMed  Google Scholar 

  23. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. https://doi.org/10.1038/nmeth.2089

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Yu T, Zeng J, Lim B, **a Y (2010) Aqueous-phase synthesis of Pt/CeO2 hybrid nanostructures and their catalytic properties. Adv Mater 22:5188–5192. https://doi.org/10.1002/adma.201002763

    Article  CAS  PubMed  Google Scholar 

  25. Zhu J, Yang J, Xu Z et al (2017) Silicon anodes protected by a nitrogen-doped porous carbon shell for high-performance lithium-ion batteries. Nanoscale 9:8871–8878. https://doi.org/10.1039/c7nr01545c

    Article  CAS  PubMed  Google Scholar 

  26. Feyzi-barnaji B, Dinarvand R, Salehzadeh H et al (2021) Construction of a ternary nano-architecture based graphene oxide sheets, toward electrocatalytic determination of tumor-associated anti-p53 autoantibodies in human serum. Talanta 230:122276. https://doi.org/10.1016/j.talanta.2021.122276

    Article  CAS  PubMed  Google Scholar 

  27. Leo Di G, Sardanelli F (2020) Statistical significance: p value, 0.05 threshold, and applications to radiomics—reasons for a conservative approach. Eur Radiol Exp 4:18. https://doi.org/10.1186/s41747-020-0145-y

    Article  Google Scholar 

  28. Stolarczyk JK, Ghosh S, Brougham DF (2009) Controlled growth of nanoparticle clusters through competitive stabilizer desorption. Angew Chemie - Int Ed 48:175–178. https://doi.org/10.1002/anie.200803895

    Article  CAS  Google Scholar 

  29. Ghosh S, Divya D, Remani KC, Sreeremya TS (2010) Growth of monodisperse nanocrystals of cerium oxide during synthesis and annealing. J Nanoparticle Res 12:1905–1911. https://doi.org/10.1007/s11051-009-9753-4

    Article  CAS  Google Scholar 

  30. Forge D, Laurent S, Gossuin Y et al (2011) An original route to stabilize and functionalize magnetite nanoparticles for theranosis applications. J Magn Magn Mater 323:410–415. https://doi.org/10.1016/j.jmmm.2010.09.031

    Article  CAS  Google Scholar 

  31. Sifontes AB, Gonzalez G, Ochoa JL et al (2011) Chitosan as template for the synthesis of ceria nanoparticles. Mater Res Bull 46:1794–1799. https://doi.org/10.1016/j.materresbull.2011.07.049

    Article  CAS  Google Scholar 

  32. Wang Y, Chen L, Liu Z et al (2018) A cationic surfactant-induced selective etching strategy for the synthesis of organosilica hollow nanospheres. J Sol-Gel Sci Technol 87:147–155. https://doi.org/10.1007/s10971-018-4705-z

    Article  CAS  Google Scholar 

  33. Liu Z, Chen L, Ye X et al (2016) Selective basic etching of bifunctional core–shell composite particles for the fabrication of organic functionalized hollow mesoporous silica nanospheres. New J Chem 40:825–831. https://doi.org/10.1039/C5NJ02906F

    Article  CAS  Google Scholar 

  34. Buśko-Oszczapowicz I, Oszczapowicz J (1991) Detection and determination of imidic acid derivatives. In: The Chemistry of Amidines and Related Compounds. Amidines and Imidates 2:231–299

  35. Atta AM, Al-Lohedan HA, Al-Hussain SA (2015) Functionalization of magnetite nanoparticles as oil spill collector. Int J Mol Sci 16:6911–6931. https://doi.org/10.3390/ijms16046911

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Kakhki S, Barsan MM, Shams E, Brett CMA (2012) Development and characterization of poly(3,4-ethylenedioxythiophene)-coated poly(methylene blue)-modified carbon electrodes. Synth Met 161:2718–2726. https://doi.org/10.1016/j.synthmet.2011.10.007

    Article  CAS  Google Scholar 

  37. Moreira Gonçalves L (2021) Electropolymerized molecularly imprinted polymers: perceptions based on recent literature for soon-to-be world-class scientists. Curr Opin Electrochem 25:100640. https://doi.org/10.1016/j.coelec.2020.09.007

    Article  CAS  Google Scholar 

  38. Melato AI, Mendonça MH, Abrantes LM (2009) Effect of the electropolymerisation conditions on the electrochemical, morphological and structural properties of PEDOTh films. J Solid State Electrochem 13:417–426. https://doi.org/10.1007/s10008-008-0522-6

    Article  CAS  Google Scholar 

  39. Meng L, Turner APF, Mak WC (2019) Modulating electrode kinetics for discrimination of dopamine by a PEDOT:COOH interface doped with negatively charged tricarboxylate. ACS Appl Mater Interfaces 11:34497–34506. https://doi.org/10.1021/acsami.9b12946

    Article  CAS  PubMed  Google Scholar 

  40. Zhou Y, Wang Z, Yue W, et al (2009) Label-free detection of p53 antibody using a microcantilever biosensor with piezoresistive readout. In: SENSORS, 2009 IEEE Xplore. IEEE, Christchurch,  pp 819–822

  41. Adeniyi OK, Mashazi PN (2020) Stable thin films of human P53 antigen on gold surface for the detection of tumour associated anti-P53 autoantibodies. Electrochim Acta 331:135272. https://doi.org/10.1016/j.electacta.2019.135272

    Article  CAS  Google Scholar 

  42. Danaei G, Finucane MM, Lu Y et al (2011) National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet 378:31–40. https://doi.org/10.1016/S0140-6736(11)60679-X

    Article  CAS  PubMed  Google Scholar 

  43. Hagel AF, Albrecht H, Dauth W et al (2017) Plasma concentrations of ascorbic acid in a cross section of the German population. J Int Med Res 46:168–174. https://doi.org/10.1177/0300060517714387

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Goode JA, Rushworth JVH, Millner PA (2015) Biosensor regeneration: a review of common techniques and outcomes. Langmuir 31:6267–6276. https://doi.org/10.1021/la503533g

    Article  CAS  PubMed  Google Scholar 

  45. Soto D, Alzate M, Gallego J, Orozco J (2021) Hybrid nanomaterial/catalase-modified electrode for hydrogen peroxide sensing. J Electroanal Chem 880:114826. https://doi.org/10.1016/j.jelechem.2020.114826

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank The Ruta N complex and EPM for hosting the Max Planck Tandem Groups.

Funding

The work has been funded by MINCIENCIAS, MINEDUCACIÓN, MINCIT, and ICETEX through the Program Ecosistema Científico Cod. FP44842-211–2018, project number 58536. J. O. received support from The University of Antioquia and the Max Planck Society through the cooperation agreement 566–1, 2014.

Author information

Authors and Affiliations

Authors

Contributions

Andrés F. Cruz-Pacheco: conceptualization; methodology; formal analysis; investigation; data curation; writing—original draft. Jennifer Quinchia: investigation; data curation; writing—original draft. Jahir Orozco: conceptualization; formal analysis; writing—review and editing; supervision; project administration; funding acquisition.

Corresponding author

Correspondence to Jahir Orozco.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1214 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruz-Pacheco, A.F., Quinchia, J. & Orozco, J. Cerium oxide–doped PEDOT nanocomposite for label-free electrochemical immunosensing of anti-p53 autoantibodies. Microchim Acta 189, 228 (2022). https://doi.org/10.1007/s00604-022-05322-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05322-5

Keywords

Navigation