Log in

Preparation and highlighted applications of magnetic microparticles and nanoparticles: a review on recent advances

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

This review (with 144 refs.) focuses on the recent advances in the preparation and application of magnetic micro/nanoparticles. Specifically, it covers (a) methods for preparation (such as by coprecipitation, pyrolysis, hydrothermal, solvothermal, sol-gel, micro-emulsion, sonochemical, medium dispersing or emulsion polymerization methods), and (b) applications such as magnetic resonance imaging, magnetic separation of biomolecules (nucleic acids; proteins; cells), separation of metal ions and organic analytes, immobilization of enzymes, biological detection, magnetic catalysis and water treatment. Finally, the existing challenges and possible trends in the field are addressed.

This review focuses on the recent advances in the preparation and application of magnetic micro/nano particles. Finally, the existed problems and possible trends in the field were discussed.

a: Fe3O4@SiO2-PVAm: polyvinyl amine-coated Fe3O4@SiO2

b: CTS/MMT-Fe3O4 microsphere: chitosan/montmorillonite-Fe3O4 microsphere

c: MTAMs: magnetic targeted antibiotic microspheres

d: SM: the code of iron oxide-silica composite microspheres

e: PSt: poly styrene

f: gamma-PGA- PLA: poly(gamma-glutamic acid) and poly(lactide)

g: poly(-MMA–DVB–GMA) microspheres: poly(methylmethacrylate–divinylbenzene–glycidylmethacrylate) microspheres

h: AEAPS: N-(2-aminoethyl)-3-aminopropyltrimethoxysilane

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kim DK, Zhang Y, Voit W, Rao KV, Muhammed M (2001) Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles. J Magn Magn Mater 225(1–2):30–36

    Article  CAS  Google Scholar 

  2. Chen D, Li W, Wu Y, Zhu Q, Lu Z, Du G (2013) Preparation and characterization of chitosan/montmorillonite magnetic microspheres and its application for the removal of Cr (VI). Chem Eng J 221:8–15

    Article  CAS  Google Scholar 

  3. Gedanken A (2004) Using sonochemistry for the fabrication of nanomaterials. Ultrason Sonochem 11(2):47–55

    Article  CAS  Google Scholar 

  4. Vijayakumar R, Koltypin Y, Felner I, Gedanken A (2000) Sonochemical synthesis and characterization of pure nanometer-sized Fe3O4 particles. Mat Sci Eng A-Struct 286(1):101–105

  5. Wu S, Jiang W, Zhang X, Sun H, Zhang W, Dai J, Liu L, Chen X, Li F (2012) A sonochemical route for the encapsulation of drug in magnetic microspheres. J Magn Magn Mater 324(2):124–127

    Article  CAS  Google Scholar 

  6. Yang CL, Liu HZ, Guan YP, **ng JM, Liu JG, Shan GB (2005) Preparation of magnetic poly(methylmethacrylate-divinylbenzene-glycidylmethacrylate) microspheres by spraying suspension polymerization and their use for protein adsorption. J Magn Magn Mater 293(1):187–192

    Article  CAS  Google Scholar 

  7. Chen W, Shen H, Li X, Jia N, Xu J (2006) Synthesis of immunomagnetic nanoparticles and their application in the separation and purification of CD34(+) hematopoietic stem cells. Appl Surf Sci 253(4):1762–1769

    Article  CAS  Google Scholar 

  8. Liang HF, Yang TF, Huang CT, Chen MC, Sung HW (2005) Preparation of nanoparticles composed of poly(gamma-glutamic acid)-poly(lactide) block copolymers and evaluation of their uptake by HepG2 cells. J Control Release 105(3):213–225

    Article  CAS  Google Scholar 

  9. Chen Y, Qian Z, Zhang Z (2008) Novel preparation of magnetite/polystyrene composite particles via inverse emulsion polymerization. Colloids Surf A Physicochem Eng Asp 312(2–3):209–213

    Article  CAS  Google Scholar 

  10. Shao D, **a A, Hu J, Wang C, Yu W (2008) Monodispersed magnetite/silica composite microspheres: preparation and application for plasmid DNA purification. Colloids Surf A Physicochem Eng Asp 322(1–3):61–65

    Article  CAS  Google Scholar 

  11. Liu P, Zhong Y, Luo Y (2014) Preparation of monodisperse biodegradable magnetic microspheres using a T-shaped microchannel reactor. Mater Lett 117:37–40

    Article  CAS  Google Scholar 

  12. Oster J, Parker J, Brassard LA (2001) Polyvinyl-alcohol-based magnetic beads for rapid and efficient separation of specific or unspecific nucleic acid sequences. J Magn Magn Mater 225(1–2):145–150

    Article  CAS  Google Scholar 

  13. Liu XQ, Ma ZY, **ng JM, Liu HZ (2004) Preparation and characterization of amino-silane modified superparamagnetic silica nanospheres. J Magn Magn Mater 270(1–2):1–6

    Article  CAS  Google Scholar 

  14. Tsai HY, Jian SJ, Huang ST, Fuh CB (2009) Competitive magnetic immunoassay for protein detection in thin channels. J Chromatogr A 1216(44):7493–7496

    Article  CAS  Google Scholar 

  15. Zhang D-H, Yuwen L-X, **e Y-L, Li W, Li X-B (2012) Improving immobilization of lipase onto magnetic microspheres with moderate hydrophobicity/hydrophilicity. Colloids Surf B: Biointerfaces 89:73–78

    Article  CAS  Google Scholar 

  16. Chung YS, Park SB, Kang DW (2004) Magnetically separable titania-coated nickel ferrite photocatalyst. Mater Chem Phys 86(2–3):375–381

    Article  CAS  Google Scholar 

  17. Zamani F, Izadi E (2014) Polyvinyl amine coated Fe3O4@SiO2 magnetic microspheres for Knoevenagel condensation. Chin J Catal 35(1):21–27

    Article  CAS  Google Scholar 

  18. Thapa D, Palkar VR, Kurup MB, Malik SK (2004) Properties of magnetite nanoparticles synthesized through a novel chemical route. Mater Lett 58(21):2692–2694

    Article  CAS  Google Scholar 

  19. Hyeon T, Lee SS, Park J, Chung Y, Bin Na H (2001) Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J Am Chem Soc 123(51):12798–12801

    Article  CAS  Google Scholar 

  20. Sun SH, Murray CB (1999) Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices (invited). J Appl Phys 85(8):4325–4330

    Article  CAS  Google Scholar 

  21. Chen D, Xu R (1998) Hydrothermal synthesis and characterization of nanocrystalline Fe3O4 powders. Mater Res Bull 33(7):1015–1021

    Article  CAS  Google Scholar 

  22. Mishra D, Anand S, Panda RK, Das RP (2004) Studies on characterization, microstructures and magnetic properties of nano-size barium hexa-ferrite prepared through a hydrothermal precipitation-calcination route. Mater Chem Phys 86(1):132–136

    Article  CAS  Google Scholar 

  23. Yao G, Qi D, Deng C, Zhang X (2008) Functionalized magnetic carbonaceous microspheres for trypsin immobilization and the application to fast proteolysis. J Chromatogr A 1215(1–2):82–91

    Article  CAS  Google Scholar 

  24. Lv Y, Wang H, Wang X, Bai J (2009) Synthesis, characterization and growing mechanism of monodisperse Fe3O4 microspheres. J Cryst Growth 311(13):3445–3450

    Article  CAS  Google Scholar 

  25. Yang P, Quan Z, Hou Z, Li C, Kang X, Cheng Z, Lin J (2009) A magnetic, luminescent and mesoporous core-shell structured composite material as drug carrier. Biomaterials 30(27):4786–4795

    Article  CAS  Google Scholar 

  26. Liu Y, Li C, Zhang H, Fan X, Liu Y, Zhang Q (2015) One-pot hydrothermal synthesis of highly monodisperse water-dispersible hollow magnetic microspheres and construction of photonic crystals. Chem Eng J 259:779–786

    Article  CAS  Google Scholar 

  27. Lou MY, Wang DP, Huang WH, Chen D, Liu B (2006) Effect of silane-coupling agents on synthesis and character of core-shell SiO2 magnetic microspheres. J Magn Magn Mater 305(1):83–90

    Article  CAS  Google Scholar 

  28. Xu H, Tong N, Cui L, Lu Y, Gu H (2007) Preparation of hydrophilic magnetic nanospheres with high saturation magnetization. J Magn Magn Mater 311(1):125–130

    Article  CAS  Google Scholar 

  29. Liu B, **e W, Wang D, Huang W, Yu M, Yao A (2008) Preparation and characterization of magnetic luminescent nanocomposite particles. Mater Lett 62(17–18):3014–3017

    Article  CAS  Google Scholar 

  30. Xu J, Yang H, Fu W, Du K, Sui Y, Chen J, Zeng Y, Li M, Zou G (2007) Preparation and magnetic properties of magnetite nanoparticles by sol-gel method. J Magn Magn Mater 309(2):307–311

    Article  CAS  Google Scholar 

  31. Shao D, Xu K, Song X, Hu J, Yang W, Wang C (2009) Effective adsorption and separation of lysozyme with PAA-modified Fe3O4@silica core/shell microspheres. J Colloid Interface Sci 336(2):526–532

    Article  CAS  Google Scholar 

  32. Liu YD, Choi HJ, Choi S-B (2012) Controllable fabrication of silica encapsulated soft magnetic microspheres with enhanced oxidation-resistance and their rheology under magnetic field. Colloids Surf A Physicochem Eng Asp 403:133–138

    Article  CAS  Google Scholar 

  33. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021

    Article  CAS  Google Scholar 

  34. Sun Y, Wang B, Wang H, Jiang J (2007) Controllable preparation of magnetic polymer microspheres with different morphologies by miniemulsion polymerization. J Colloid Interface Sci 308(2):332–336

    Article  CAS  Google Scholar 

  35. Gao Z, Zhang Q, Cao Y, Pan P, Bai F, Bai G (2009) Preparation of novel magnetic cellulose microspheres via cellulose binding domain-streptavidin linkage and use for mRNA isolation from eukaryotic cells and tissues. J Chromatogr A 1216(45):7670–7676

    Article  CAS  Google Scholar 

  36. Fegan C, Poynton CH, Whittaker JA (1990) The gut mucosal barrier in bone marrow transplantation. Bone Marrow Transplant 5(6):373–377

    CAS  Google Scholar 

  37. Wang DS, He JB, Rosenzweig N, Rosenzweig Z (2004) Superparamagnetic Fe2O3 Beads-CdSe/ZnS quantum dots core-shell nanocomposite particles for cell separation. Nano Lett 4(3):409–413

    Article  CAS  Google Scholar 

  38. Chung T-H, Chang J-Y, Lee W-C (2009) Application of magnetic poly(styrene-glycidyl methacrylate) microspheres for immunomagnetic separation of bone marrow cells. J Magn Magn Mater 321(10):1635–1638

    Article  CAS  Google Scholar 

  39. Hallier-Soulier S, Guillot E (1999) An immunomagnetic separation polymerase chain reaction assay for rapid and ultra-sensitive detection of Cryptosporidium parvum in drinking water. FEMS Microbiol Lett 176(2):285–289

    Article  CAS  Google Scholar 

  40. Perez JM, Simeone FJ, Saeki Y, Josephson L, Weissleder R (2003) Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media. J Am Chem Soc 125(34):10192–10193

    Article  CAS  Google Scholar 

  41. Chen A-Z, Lin X-F, Wang S-B, Li L, Liu Y-G, Ye L, Wang G-Y (2012) Biological evaluation of Fe3O4-poly(L-lactide)-poly(ethylene glycol)-poly(L-lactide) magnetic microspheres prepared in supercritical CO2. Toxicol Lett 212(1):75–82

    Article  CAS  Google Scholar 

  42. Chen X, Ding N, Zang H, Yeung H, Zhao R-S, Cheng C, Liu J, Chan TWD (2013) Fe3O4@MOF core-shell magnetic microspheres for magnetic solid-phase extraction of polychlorinated biphenyls from environmental water samples. J Chromatogr A 1304:241–245

    Article  CAS  Google Scholar 

  43. Candido RRF, Favero V, Duke M, Karl S, Gutierrez L, Woodward RC, Graeff-Teixeira C, Jones MK, St Pierre TG (2015) The affinity of magnetic microspheres for Schistosoma eggs. Int J Parasitol 45(1):43–50

    Article  CAS  Google Scholar 

  44. de la Escosura-Muniz A, Plichta Z, Horak D, Merkoci A (2015) Alzheimer’s disease biomarkers detection in human samples by efficient capturing through porous magnetic microspheres and labelling with electrocatalytic gold nanoparticles. Biosens Bioelectron 67:162–169

    Article  CAS  Google Scholar 

  45. Demirel D, Ozdural AR, Mutlu M (2004) Preparation and characterization of magnetic duolite-polystyrene composite particles for enzyme immobilization. J Food Eng 62(3):203–208

    Article  Google Scholar 

  46. Lei H, Wang W, Chen LL, Li XC, Yi B, Deng L (2004) The preparation and catalytically active characterization of papain immobilized on magnetic composite microspheres. Enzym Microb Technol 35(1):15–21

    Article  CAS  Google Scholar 

  47. Hafeli U, Pauer G, Failing S, Tapolsky G (2001) Radiolabeling of magnetic particles with rhenium-188 for cancer therapy. J Magn Magn Mater 225(1–2):73–78

    Article  CAS  Google Scholar 

  48. Lubbe AS, Bergemann C, Riess H, Schriever F, Reichardt P, Possinger K, Matthias M, Dorken B, Herrmann F, Gurtler R, Hohenberger P, Haas N, Sohr R, Sander B, Lemke AJ, Ohlendorf D, Huhnt W, Huhn D (1996) Clinical experiences with magnetic drag targeting: a phase I study with 4’-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res 56(20):4686–4693

    CAS  Google Scholar 

  49. Ren J, Hong H, Ren T, Teng X (2006) Preparation and characterization of magnetic PLA-PEG composite nanoparticles for drug targeting. React Funct Polym 66(9):944–951

    Article  CAS  Google Scholar 

  50. Fahlvik AK, Holtz E, Klaveness J (1990) Relaxation efficacy of paramagnetic and superparamagnetic microspheres in liver and spleen. Magn Reson Imaging 8(4):363–369

    Article  CAS  Google Scholar 

  51. Gellissen J, Axmann C, Prescher A, Bohndorf K, Lodemann KP (1999) Extra- and intracellular accumulation of ultrasmall superparamagnetic iron oxides (USPIO) in experimentally induced abscesses of the peripheral soft tissues and their effects on magnetic resonance imaging. Magn Reson Imaging 17(4):557–567

    Article  CAS  Google Scholar 

  52. Muhler A, Zhang X, Wang H, Lawaczeck R, Weinmann HJ (1995) Investigation of mechanisms influencing the accumulation of ultrasmall superparamagnetic iron oxide particles in lymph nodes. Investig Radiol 30(2):98–103

    Article  CAS  Google Scholar 

  53. Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53(2):283–318

    CAS  Google Scholar 

  54. Kim BH, Shin K, Kwon SG, Jang Y, Lee H-S, Lee H, Jun SW, Lee J, Han SY, Yim Y-H, Kim D-H, Hyeon T (2013) Sizing by weighing: characterizing sizes of ultrasmall-sized iron oxide nanocrystals using MALDI-TOF mass spectrometry. J Am Chem Soc 135(7):2407–2410

    Article  CAS  Google Scholar 

  55. Jiang LQ, Gao L (2003) Carbon nanotubes-magnetite nanocomposites from solvothermal processes: formation, characterization, and enhanced electrical properties. Chem Mater 15(14):2848–2853

    Article  CAS  Google Scholar 

  56. Lee Y, Lee J, Bae CJ, Park JG, Noh HJ, Park JH, Hyeon T (2005) Large-scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions. Adv Funct Mater 15(3):503–509

    Article  CAS  Google Scholar 

  57. Liang X, ** B, **ong S, Zhu Y, Xue F, Qian Y (2009) Porous soft magnetic material: the maghemite microsphere with hierarchical nanoarchitecture and its application in water purification. Mater Res Bull 44(12):2233–2239

    Article  CAS  Google Scholar 

  58. Lu B-Q, Zhu Y-J, Zhao X-Y, Cheng G-F, Ruan Y-J (2013) Sodium polyacrylate modified Fe3O4 magnetic microspheres formed by self-assembly of nanocrystals and their applications. Mater Res Bull 48(2):895–900

    Article  CAS  Google Scholar 

  59. Jiang R, Zhu HY, Li JB, Fu FQ, Yao J, Jiang ST, Zeng GM (2016) Fabrication of novel magnetically separable BiOBr/CoFe2O4 microspheres and its application in the efficient removal of dye from aqueous phase by an environment-friendly and economical approach. Appl Surf Sci 364:604–612

    Article  CAS  Google Scholar 

  60. Zhu W, Zhang Y, Hou C, Pan D, He J, Zhu H (2016) Covalent immobilization of lipases on monodisperse magnetic microspheres modified with PAMAM-dendrimer. J Nanopart Res 18(2):32

  61. Xu M, Liu M, Sun M, Chen K, Cao X, Hu Y (2016) Magnetic solid-phase extraction of phthalate esters (PAEs) in apparel textile by core shell structured Fe3O4@silica@triblock-copolymer magnetic microspheres. Talanta 150:125–134

    Article  CAS  Google Scholar 

  62. Zhou ZH, Wang J, Liu X, Chan HSO (2001) Synthesis of Fe3O4 nanoparticles from emulsions. J Mater Chem 11(6):1704–1709

    Article  CAS  Google Scholar 

  63. Sivakumar M, Gedanken A, Zhong W, Du YW, Bhattacharya D, Yeshurun Y, Felner I (2004) Nanophase formation of strontium hexaferrite fine powder by the sonochemical method using Fe(CO)(5). J Magn Magn Mater 268(1–2):95–104

    Article  CAS  Google Scholar 

  64. Hong RY, Fu HP, Di GQ, Zheng Y, Wei DG (2008) Facile route to gamma-Fe2O3/SiO2 nanocomposite used as a precursor of magnetic fluid. Mater Chem Phys 108(1):132–141

    Article  CAS  Google Scholar 

  65. Pu HT, Jiang FJ (2005) Towards high sedimentation stability: magnetorheological fluids based on CNT/Fe3O4 nanocomposites. Nanotechnology 16(9):1486–1489

    Article  CAS  Google Scholar 

  66. Kim IT, Nunnery GA, Jacob K, Schwartz J, Liu X, Tannenbaum R (2010) Synthesis, characterization, and alignment of magnetic carbon nanotubes tethered with maghemite nanoparticles. J Phys Chem C 114(15):6944–6951

    Article  CAS  Google Scholar 

  67. Zayat MZ, del Monte F, Morales MD, Rosa G, Guerrero H, Serna CJ, Levy D (2003) Highly transparent gamma-Fe2O3/Vycor-glass magnetic nanocomposites exhibiting faraday rotation. Adv Mater 15(21):1809–1812

    Article  CAS  Google Scholar 

  68. Liu ZL, Yang XB, Yao KL, Du GH, Liu ZS (2006) Preparation and characterization of magnetic P(St-co-MAA-co-AM) microspheres. J Magn Magn Mater 302(2):529–535

    Article  CAS  Google Scholar 

  69. Lu M, Bai S, Yang K, Sun Y (2007) Synthesis and characterization of magnetic polymer microspheres with a core-shell structure. China Particuology 5(1–2):180–185

    Article  CAS  Google Scholar 

  70. Zhang J, Yu D, Chen W, **e Y, Wan W, Liang H, Min C (2009) Preparation of poly(styrene-glucidylmethacrylate)/Fe3O4 composite microspheres with high magnetite contents. J Magn Magn Mater 321(6):572–577

    Article  CAS  Google Scholar 

  71. Zhang K, Wu W, Guo K, Chen JF, Zhang PY (2009) Magnetic polymer enhanced hybrid capsules prepared from a novel pickering emulsion polymerization and their application in controlled drug release. Colloids Surf A Physicochem Eng Asp 349(1–3):110–116

    CAS  Google Scholar 

  72. Zhang H, Zhang Q, Zhang B, Guo F (2009) Preparation of magnetic composite microspheres by surfactant free controlled radical polymerization: preparation and characteristics. J Magn Magn Mater 321(23):3921–3925

    Article  CAS  Google Scholar 

  73. Salih T, Ahlford A, Nilsson M, Plichta Z, Horak D (2016) Streptavidin-modified monodispersed magnetic poly(2-hydroxyethyl methacrylate) microspheres as solid support in DNA-based molecular protocols. Mat Sci Eng C-Mater 61:362–367

  74. Yuan D, Chen L, Yuan L, Liao S, Yang M, Zhang Q (2016) Superparamagnetic polymer composite microspheres supported Schiff base palladium complex: an efficient and reusable catalyst for the Suzuki coupling reactions. Chem Eng J 287:241–251

    Article  CAS  Google Scholar 

  75. Salgueirino-Maceira V, Liz-Marzan LM, Farle M (2004) Water-based ferrofluids from FexPt1-x nanoparticles synthesized in organic media. Langmuir 20(16):6946–6950

    Article  CAS  Google Scholar 

  76. Lopez-Lopez MT, Duran JDG, Delgado A, Gonzalez-Caballero F (2005) Stability and magnetic characterization of oleate-covered magnetite ferrofluids in different nonpolar carriers. J Colloid Interface Sci 291(1):144–151

    Article  CAS  Google Scholar 

  77. Liong M, Shao H, Haun JB, Lee H, Weissleder R (2010) Carboxymethylated polyvinyl alcohol stabilizes doped ferrofluids for biological applications. Adv Mater 22(45):5168-+

    Article  CAS  Google Scholar 

  78. Azhdarzadeh M, Atyabi F, Saei AA, Varnamkhasti BS, Omidi Y, Fateh M, Ghavami M, Shanehsazzadeh S, Dinarvand R (2016) Theranostic MUC-1 aptamer targeted gold coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging and photothermal therapy of colon cancer. Colloids Surf B: Biointerfaces 143:224–232

    Article  CAS  Google Scholar 

  79. Kumar S, Meena VK, Hazari PP, Sharma RK (2016) FITC-dextran entrapped and silica coated gadolinium oxide nanoparticles for synchronous optical and magnetic resonance imaging applications. Int J Pharm 506(1–2):242–252

    Article  CAS  Google Scholar 

  80. Holbrook RJ, Rammohan N, Rotz MW, MacRenaris KW, Preslar AT, Meade TJ (2016) Gd(III)-dithiolane gold nanoparticles for T-1-weighted magnetic resonance imaging of the pancreas. Nano Lett 16(5):3202–3209

    Article  CAS  Google Scholar 

  81. Zhang X, Blasiak B, Marenco AJ, Trudel S, Tomanek B, van Veggel FCJM (2016) Design and regulation of NaHoF4 and NaDyF4 nanoparticles for high-field magnetic resonance imaging. Chem Mater 28(9):3060–3072

    Article  CAS  Google Scholar 

  82. Chen W-H, Luo G-F, Lei Q, Cao F-Y, Fan J-X, Qiu W-X, Jia H-Z, Hong S, Fang F, Zeng X, Zhuo R-X, Zhang X-Z (2016) Rational design of multifunctional magnetic mesoporous silica nanoparticle for tumor-targeted magnetic resonance imaging and precise therapy. Biomaterials 76:87–101

    Article  CAS  Google Scholar 

  83. Ni D, Zhang J, Bu W, Zhang C, Yao Z, **ng H, Wang J, Duan F, Liu Y, Fan W, Feng X, Shi J (2016) PEGylated NaHoF4 nanoparticles as contrast agents for both X-ray computed tomography and ultra-high field magnetic resonance imaging. Biomaterials 76:218–225

    Article  CAS  Google Scholar 

  84. Chen Y, Ai K, Liu J, Sun G, Yin Q, Lu L (2015) Multifunctional envelope-type mesoporous silica nanoparticles for pH-responsive drug delivery and magnetic resonance imaging. Biomaterials 60:111–120

    Article  CAS  Google Scholar 

  85. Watcharin W, Schmithals C, Pleli T, Koeberle V, Korkusuz H, Huebner F, Waidmann O, Zeuzem S, Korf H-W, Terfort A, Gelperina S, Vogl TJ, Kreuter J, Piiper A (2015) Detection of hepatocellular carcinoma in transgenic mice by Gd-DTPA- and rhodamine 123-conjugated human serum albumin nanoparticles in T1 magnetic resonance imaging. J Control Release 199:63–71

    Article  CAS  Google Scholar 

  86. Bunkoed O, Kanatharana P (2015) Extraction of polycyclic aromatic hydrocarbons with a magnetic sorbent composed of alginate, magnetite nanoparticles and multiwalled carbon nanotubes. Microchim Acta 182(7–8):1519–1526

    Article  CAS  Google Scholar 

  87. Kifle D, Wibetoe G (2013) Retention and elution of precious metals on cyano-modified solid phase microparticle sorbent. Microchim Acta 180(11–12):981–987

    Article  CAS  Google Scholar 

  88. Wang Y, Wu J, Chen Y, Xue F, Teng J, Cao J, Lu C, Chen W (2015) Magnetic microparticle-based SELEX process for the identification of highly specific aptamers of heart marker--brain natriuretic peptide. Microchim Acta 182(1–2):331–339

    Article  CAS  Google Scholar 

  89. Yang J, Si L, Cui S, Bi W (2015) Synthesis of a graphitic carbon nitride nanocomposite with magnetite as a sorbent for solid phase extraction of phenolic acids. Microchim Acta 182(3–4):737–744

    Article  CAS  Google Scholar 

  90. Zhang L, Zhang Z, Wan Q (2006) Preparation of porous magnetic silica microspheres and their application for genomic deoxyribonucleic acid extraction. Chin J Anal Chem 34(7):923–926

    Article  CAS  Google Scholar 

  91. Zhang Z-C, Cui Y, Wan Q-H (2007) Surface modification of magnetic silica microspheres and its application to the isolation of plant genomic nucleic acids. Chin J Anal Chem 35(1):31–36

    Article  CAS  Google Scholar 

  92. Shi R, Wang Y, Hu Y, Chen L, Wan Q-H (2009) Preparation of magnetite-loaded silica microspheres for solid-phase extraction of genomic DNA from soy-based foodstuffs. J Chromatogr A 1216(36):6382–6386

    Article  CAS  Google Scholar 

  93. Liu JW, Zhang Y, Chen D, Yang T, Chen ZP, Pan SY, Gu N (2009) Facile synthesis of high-magnetization gamma-Fe2O3/alginate/silica microspheres for isolation of plasma DNA. Colloids Surf A Physicochem Eng Asp 341(1–3):33–39

    Article  CAS  Google Scholar 

  94. Obrien SM, Thomas ORT, Dunnill P (1996) Non-porous magnetic chelator supports for protein recovery by immobilised metal affinity adsorption. J Biotechnol 50(1):13–25

    Article  CAS  Google Scholar 

  95. Shamim N, Hong L, Hidajat K, Uddin MS (2007) Thermosensitive polymer (N-isopropylacrylamide) coated nanomagnetic particles: preparation and characterization. Colloids Surf B: Biointerfaces 55(1):51–58

    Article  CAS  Google Scholar 

  96. Wang P, J-q Z, Z-j J, Y-c L, S-m L (2009) Preparation of magnetic iron/mesoporous silica composite spheres and their use in protein immobilization. Trans Nonferrous Metals Soc China 19:S605–S610

    Article  CAS  Google Scholar 

  97. Gasilova N, Srzentic K, Qiao L, Liu B, Beck A, Tsybin YO, Girault HH (2016) On-Chip mesoporous functionalized magnetic microspheres for protein sequencing by extended bottom-up mass spectrometry. Anal Chem 88(3):1775–1784

    Article  CAS  Google Scholar 

  98. Yan X, Kong J, Yang C, Fu G (2015) Facile synthesis of hairy core-shell structured magnetic polymer submicrospheres and their adsorption of bovine serum albumin. J Colloid Interface Sci 445:9–15

    Article  CAS  Google Scholar 

  99. Ding C, Ma X, Yao X, Jia L (2015) Facile synthesis of copper(II)-decorated magnetic particles for selective removal of hemoglobin from blood samples. J Chromatogr A 1424:18–26

    Article  CAS  Google Scholar 

  100. Zheng J, Lin Z, Zhang L, Yang H (2015) Polydopamine-mediated immobilization of phenylboronic acid on magnetic microspheres for selective enrichment of glycoproteins and glycopeptides. Sci China Chem 58(6):1056–1064

  101. Sun L, Li Y, Yang P, Zhu G, Dovichi NJ (2012) High efficiency and quantitatively reproducible protein digestion by trypsin-immobilized magnetic microspheres. J Chromatogr A 1220:68–74

    Article  CAS  Google Scholar 

  102. Orlov AV, Bragina VA, Nikitin MP, Nikitin PI (2016) Rapid dry-reagent immunomagnetic biosensing platform based on volumetric detection of nanoparticles on 3D structures. Biosens Bioelectron 79:423–429

    Article  CAS  Google Scholar 

  103. Yamazaki S, Matsunaga S, Hori K (2001) Photocatalytic degradation of trichloroethylene in water using TiO(2) pellets. Water Res 35(4):1022–1028

    Article  CAS  Google Scholar 

  104. Horikoshi S, Watanabe N, Onishi H, Hidaka H, Serpone N (2002) Photodecomposition of a nonylphenol polyethoxylate surfactant in a cylindrical photoreactor with TiO(2) immobilized fiberglass cloth. Appl Catal B Environ 37(2):117–129

    Article  CAS  Google Scholar 

  105. Anpo M, Zhang SG, Mishima H, Matsuoka M, Yamashita H (1997) Design of photocatalysts encapsulated within the zeolite framework and cavities for the decomposition of NO into N-2 and O-2 at normal temperature. Catal Today 39(3):159–168

    Article  CAS  Google Scholar 

  106. Beydoun D, Amal R, Low GKC, McEvoy S (2000) Novel photocatalyst: titania-coated magnetite. Activity and photodissolution. J Phys Chem B 104(18):4387–4396

    Article  CAS  Google Scholar 

  107. Zeng T, X-l Z, H-y N, Ma Y-r, W-h L, Y-q C (2013) In situ growth of gold nanoparticles onto polydopamine-encapsulated magnetic microspheres for catalytic reduction of nitrobenzene. Appl Catal B Environ 134:26–33

    Article  CAS  Google Scholar 

  108. Yang H, Li S, Wang X, Zhang F, Zhong X, Dong Z, Ma J (2012) Core-shell silica magnetic microspheres supported proline as a recyclable organocatalyst for the asymmetric aldol reaction. J Mol Catal A Chem 363:404–410

    Article  CAS  Google Scholar 

  109. Li H, Gao S, Cao M, Cao R (2013) Self-assembly of polyoxometalate-thionine multilayer films on magnetic microspheres as photocatalyst for methyl orange degradation under visible light irradiation. J Colloid Interface Sci 394:434–440

    Article  CAS  Google Scholar 

  110. Jiang S, Yan J, Habimana F, Ji S (2016) Preparation of magnetically recyclable MIL-53(Al)@SiO2@Fe3O4 catalysts and their catalytic performance for Friedel-crafts acylation reaction. Catal Today 264:83–90

    Article  CAS  Google Scholar 

  111. Li Z-D, Wang H-L, Wei X-N, Liu X-Y, Yang Y-F, Jiang W-F (2016) Preparation and photocatalytic performance of magnetic Fe3O4@TiO2 core-shell microspheres supported by silica aerogels from industrial fly ash. J Alloys Compd 659:240–247

    Article  CAS  Google Scholar 

  112. Zhang L, Wu Z, Chen L, Zhang L, Li X, Xu H, Wang H, Zhu G (2016) Preparation of magnetic Fe3O4/TiO2/Ag composite microspheres with enhanced photocatalytic activity. Solid State Sci 52:42–48

    Article  CAS  Google Scholar 

  113. Shen S-L, Wu W, Guo K, Meng H, Chen J-F (2007) A novel process to synthesize magnetic hollow silica microspheres. Colloids Surf A Physicochem Eng Asp 311(1–3):99–105

    Article  CAS  Google Scholar 

  114. Podzus PE, Daraio ME, Jacobo SE (2009) Chitosan magnetic microspheres for technological applications: preparation and characterization. Phys B Condens Matter 404(18):2710–2712

    Article  CAS  Google Scholar 

  115. Ozcan F, Ersoz M, Yilmaz M (2009) Preparation and application of calix 4 arene-grafted magnetite nanoparticles for removal of dichromate anions. Mater Sci Eng C 29(8):2378–2383

    Article  CAS  Google Scholar 

  116. Sun X, Yang L, **ng H, Zhao J, Li X, Huang Y, Liu H (2013) Synthesis of polyethylenimine-functionalized poly(glycidyl methacrylate) magnetic microspheres and their excellent Cr(VI) ion removal properties. Chem Eng J 234:338–345

    Article  CAS  Google Scholar 

  117. Zhao Y, Li J, Zhao L, Zhang S, Huang Y, Wu X, Wang X (2014) Synthesis of amidoxime-functionalized Fe3O4@SiO2 core-shell magnetic microspheres for highly efficient sorption of U(VI). Chem Eng J 235:275–283

    Article  CAS  Google Scholar 

  118. Sun X, Yang L, Li Q, Liu Z, Dong T, Liu H (2015) Polyethylenimine-functionalized poly(vinyl alcohol) magnetic microspheres as a novel adsorbent for rapid removal of Cr(VI) from aqueous solution. Chem Eng J 262:101–108

    Article  CAS  Google Scholar 

  119. Sun W, Li L, Luo C, Fan L (2016) Synthesis of magnetic graphene nanocomposites decorated with ionic liquids for fast lead ion removal. Int J Biol Macromol 85:246–251

    Article  CAS  Google Scholar 

  120. Chang YC, Chen DH (2005) Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu(II) ions. J Colloid Interface Sci 283(2):446–451

    Article  CAS  Google Scholar 

  121. Huang C, Hu B (2008) Silica-coated magnetic nanoparticles modified with gamma-mercaptopropyltrimethoxysilane for fast and selective solid phase extraction of trace amounts of Cd, CuHg, and Pb in environmental and biological samples prior to their determination by inductively coupled plasma mass spectrometry. Spectrochim Acta B At Spectrosc 63(3):437–444

    Article  CAS  Google Scholar 

  122. Hao Y-M, Chen M, Hu Z-B (2010) Effective removal of Cu (II) ions from aqueous solution by amino-functionalized magnetic nanoparticles. J Hazard Mater 184(1–3):392–399

    Article  CAS  Google Scholar 

  123. Ge F, Li M-M, Ye H, Zhao B-X (2012) Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles. J Hazard Mater 211:366–372

    Article  CAS  Google Scholar 

  124. Zargoosh K, Abedini H, Abdolmaleki A, Molavian MR (2013) Effective Removal of Heavy Metal Ions from Industrial Wastes Using Thiosalicylhydrazide-Modified Magnetic Nanoparticles. Ind Eng Chem Res 52(42):14944–14954

    Article  CAS  Google Scholar 

  125. Zhou X, You S-J, Wang X-H, Gan Y, Zhong Y-J, Ren N-Q (2014) Hydrothermal synthesis of magnetic carbon microspheres for effective adsorption of Cd(II) in water. J Chem Technol Biotechnol 89(7):1051–1059

    Article  CAS  Google Scholar 

  126. Chou C-M, Lien H-L (2011) Dendrimer-conjugated magnetic nanoparticles for removal of zinc (II) from aqueous solutions. J Nanopart Res 13(5):2099–2107

    Article  CAS  Google Scholar 

  127. Ngomsik A-F, Bee A, Talbot D, Cote G (2012) Magnetic solid-liquid extraction of Eu(III), La(III), Ni(II) and Co(II) with maghemite nanoparticles. Sep Purif Technol 86:1–8

    Article  CAS  Google Scholar 

  128. Giraldo L, Erto A, Carlos Moreno-Pirajan J (2013) Magnetite nanoparticles for removal of heavy metals from aqueous solutions: synthesis and characterization. Adsorpt-J Int Adsorpt Soc 19(2–4):465–474

    Article  CAS  Google Scholar 

  129. Ma W, Dai J, Dai X, Yan Y (2014) Preparation and Characterization of Chitosan/Kaolin/Fe3O4 Magnetic Microspheres and Their Application for the Removal of Ciprofloxacin. Adsorpt Sci Technol 32(10):775–790

    Article  CAS  Google Scholar 

  130. Li Y, Li X, Chu J, Dong C, Qi J, Yuan Y (2010) Synthesis of core-shell magnetic molecular imprinted polymer by the surface RAFT polymerization for the fast and selective removal of endocrine disrupting chemicals from aqueous solutions. Environ Pollut 158(6):2317–2323

    Article  CAS  Google Scholar 

  131. Shi P, Ma R, Zhou Q, Li A, Wu B, Miao Y, Chen X, Zhang X (2015) Chemical and bioanalytical assessments on drinking water treatments by quaternized magnetic microspheres. J Hazard Mater 285:53–60

    Article  CAS  Google Scholar 

  132. Zhou L, Pan S, Chen X, Zhao Y, Zou B, ** M (2014) Kinetics and thermodynamics studies of pentachlorophenol adsorption on covalently functionalized Fe3O4@SiO2-MWCNTs core-shell magnetic microspheres. Chem Eng J 257:10–19

    Article  CAS  Google Scholar 

  133. Lin J, Liu Y, Chen S, Le X, Zhou X, Zhao Z, Ou Y, Yang J (2016) Reversible immobilization of laccase onto metal-ion-chelated magnetic microspheres for bisphenol a removal. Int J Biol Macromol 84:189–199

    Article  CAS  Google Scholar 

  134. Lu S, Chen L, Dong Y, Chen Y (2011) Adsorption of Eu(III) on iron oxide/multiwalled carbon nanotube magnetic composites. J Radioanal Nucl Chem 288(2):587–593

    Article  CAS  Google Scholar 

  135. Ma X, Tao H, Yang K, Feng L, Cheng L, Shi X, Li Y, Guo L, Liu Z (2012) A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging. Nano Res 5(3):199–212

    Article  CAS  Google Scholar 

  136. Han Q, Wang Z, **a J, Chen S, Zhang X, Ding M (2012) Facile and tunable fabrication of Fe3O4/graphene oxide nanocomposites and their application in the magnetic solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples. Talanta 101:388–395

    Article  CAS  Google Scholar 

  137. Bai S, Shen X, Zhong X, Liu Y, Zhu G, Xu X, Chen K (2012) One-pot solvothermal preparation of magnetic reduced graphene oxide-ferrite hybrids for organic dye removal. Carbon 50(6):2337–2346

    Article  CAS  Google Scholar 

  138. Tian C, Zhu L, Lin F, Boyes SG (2015) Poly(acrylic acid) Bridged Gadolinium Metal-Organic Framework-Gold Nanoparticle Composites as Contrast Agents for Computed Tomography and Magnetic Resonance Bimodal Imaging. ACS Appl Mater Interfaces 7(32):17765–17775

    Article  CAS  Google Scholar 

  139. Yang F, Zhang X, Song L, Cui H, Myers JN, Bai T, Zhou Y, Chen Z, Gu N (2015) Controlled Drug Release and Hydrolysis Mechanism of Polymer-Magnetic Nanoparticle Composite. ACS Appl Mater Interfaces 7(18):9410–9419

    Article  CAS  Google Scholar 

  140. Josephson L, Tung CH, Moore A, Weissleder R (1999) High-efficiency intracellular magnetic labeling with novel superparamagnetic-tat peptide conjugates. Bioconjug Chem 10(2):186–191

    Article  CAS  Google Scholar 

  141. Zong P, Wang S, Zhao Y, Wang H, Pan H, He C (2013) Synthesis and application of magnetic graphene/iron oxides composite for the removal of U(VI) from aqueous solutions. Chem Eng J 220:45–52

    Article  CAS  Google Scholar 

  142. Gawande MB, Branco PS, Varma RS (2013) Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies. Chem Soc Rev 42(8):3371–3393

    Article  CAS  Google Scholar 

  143. Munoz M, de Pedro ZM, Casas JA, Rodriguez JJ (2015) Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation - a review. Appl Catal B Environ 176:249–265

    Article  CAS  Google Scholar 

  144. Baig RBN, Nadagouda MN, Varma RS (2015) Magnetically retrievable catalysts for asymmetric synthesis. Coord Chem Rev 287:137–156

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 81402899) and Shandong Provincial Natural Science Foundation, China (No. ZR2014HP020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan** Bi.

Ethics declarations

The authors declare that they have no conflict of interest. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors. Informed consent was obtained from all individual participants included in the study.

Additional information

Deli **ao and Ting Lu equally contributed to this work and should be considered co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**ao, D., Lu, T., Zeng, R. et al. Preparation and highlighted applications of magnetic microparticles and nanoparticles: a review on recent advances. Microchim Acta 183, 2655–2675 (2016). https://doi.org/10.1007/s00604-016-1928-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1928-y

Keywords

Navigation