Log in

\(^{42}\hbox {Ca}\) and \(^{50}\hbox {Ca}\) with the (Many- and Few-Body) Unified Method

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

A new method unifying many and few-body aspects of nuclear structure has recently been introduced (Hove et al. in J Phys G Nucl Part Phys 45:073001, 2018). This method combines the many-body description of a core and the few-body structure of this core surrounded by two valence nucleons. For this reason this method is expected to work specially well when applied to nuclei close to the driplines, where the few-body halo structure with one or more nucleons outside the core is established. In this work we apply the new method to nuclei close to the valley of stability, with \(^{42}\hbox {Ca}\) and \(^{50}\hbox {Ca}\) as illustrations. We compare the results from uncorrelated mean-field calculations with the ones obtained with the unified method allowing arbitrary correlations in the valence space. We find that the unified method provides results rather similar, although distinguishable, to the Hartree–Fock calculations. The correlations are much less pronounced than at the driplines, which initially were targets for the unified method. The halo structure is not artificially maintained, but the correlations are here demonstrated to be applicable to well-bound nuclei. Excited states built on valence degrees of freedom are calculated for the same nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D. Hove, E. Garrido, P. Sarriguren, D.V. Fedorov, H.O.U. Fynbo, A.S. Jensen, N.T. Zinner, J. Phys. G Nucl. Part. Phys. 45, 073001 (2018)

    Article  ADS  Google Scholar 

  2. A. Bohr, B.R. Mottelson, Nuclear Structure (Benjamin, Reading, MA, 1969)

    MATH  Google Scholar 

  3. P.J. Siemens, A.S. Jensen, Elements of Nuclei (Addison-Wesley Publishing Company, Redwood City, CA, 1987)

    Google Scholar 

  4. D. Vautherin, D.M. Brink, Phys. Rev. C 5, 626 (1972)

    Article  ADS  Google Scholar 

  5. E. Caurier et al., Rev. Mod. Phys. 77, 427 (2005)

    Article  ADS  Google Scholar 

  6. Y. Kanada-En’yo, H. Horiuchi, Prog. Theor. Phys. Suppl. 142, 205 (2001)

    Article  ADS  Google Scholar 

  7. H. Feldmeier, K. Bieler, J. Schnack, Nucl. Phys. A 586, 493 (1995)

    Article  ADS  Google Scholar 

  8. M. Hesse, J. Roland, D. Baye, Nucl. Phys. A 709, 184 (2002)

    Article  ADS  Google Scholar 

  9. S.K. Bogner, T.T.S. Kuo, A. Schwenk, Phys. Rep. 386, 1 (2003)

    Article  ADS  Google Scholar 

  10. H. Hergert et al., Phys. Rep. 621, 165 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  11. E. Nielsen, D.V. Fedorov, A.S. Jensen, E. Garrido, Phys. Rep. 347, 373 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  12. B.R. Barrett, P. Navratil, J.P. Vary, Prog. Part. Nucl. 69, 131 (2013)

    Article  ADS  Google Scholar 

  13. L.D. Faddeev, Zh Eksp, Teor. Fiz. 39, 1459 (1961). [Sov. Phys. JETP 12, 1014 (1961)]

  14. A.S. Jensen, K. Riisager, D.V. Fedorov, E. Garrido, Rev. Mod. Phys. 76, 215 (2004)

    Article  ADS  Google Scholar 

  15. M.V. Zhukov, B.V. Danilin, D.V. Fedorov, J.M. Bang, I.J. Thompson, J.S. Vaagen, Phys. Rep. 231, 151 (1993)

    Article  ADS  Google Scholar 

  16. D. Hove, E. Garrido, P. Sarriguren, D.V. Fedorov, H.O.U. Fynbo, A.S. Jensen, N.T. Zinner, Phys. Rev. C 95, 061301 (2017)

    Article  ADS  Google Scholar 

  17. D. Hove, E. Garrido, A.S. Jensen, P. Sarriguren, H.O.U. Fynbo, D.V. Fedorov, N.T. Zinner, Phys. Lett. B 782, 42 (2018)

    Article  ADS  Google Scholar 

  18. D. Hove, E. Garrido, P. Sarriguren, D.V. Fedorov, H.O.U. Fynbo, A.S. Jensen, N.T. Zinner, Phys. Rev. Lett. 120, 052502 (2018)

    Article  ADS  Google Scholar 

  19. E. Chabanat, R. Bonche, R. Haensel, J. Meyer, R. Schaeffer, Nucl. Phys. A 635, 231 (1998)

    Article  ADS  Google Scholar 

  20. E. Garrido, D.V. Fedorov, A.S. Jensen, Nucl. Phys. A 650, 247 (1999)

    Article  ADS  Google Scholar 

  21. E. Garrido, D.V. Fedorov, A.S. Jensen, Nucl. Phys. A 617, 153 (1997)

    Article  ADS  Google Scholar 

  22. R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C 51, 38 (1995)

    Article  ADS  Google Scholar 

  23. R.B. Firestone, S.Y.F. Chu, C.M. Baglin, Table of Isotopes (Wiley, New York, 1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Garrido.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by funds provided by the Ministry of Science, Innovation and Universities (Spain) under Contract No. PGC2018-093636-B-100.

This article belongs to the Topical Collection “Ludwig Faddeev Memorial Issue”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garrido, E., Jensen, A.S. \(^{42}\hbox {Ca}\) and \(^{50}\hbox {Ca}\) with the (Many- and Few-Body) Unified Method. Few-Body Syst 60, 45 (2019). https://doi.org/10.1007/s00601-019-1512-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-019-1512-1

Navigation