Log in

Petrochronology of the Dom Feliciano Belt foreland in southernmost Brazil reveals two distinct tectonometamorphic events in the western central Kaoko–Dom Feliciano–Gariep orogen

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Dom Feliciano Belt is the South American part of an extensive Neoproterozoic orogenic system that developed during the late Cryogenian–early Cambrian close to the margin of southwest Gondwana. The link of its evolution with the tectonic processes in its African counterpart is still not well understood. P–T estimates, Lu–Hf garnet–whole-rock ages, U–Pb monazite SIMS ages and REE garnet and monazite data from samples of the Porongos and Passo Feio complexes indicate diachronous tectonic evolution of the central Dom Feliciano Belt foreland. Metasedimentary rocks of the eastern Porongos Complex reached previously estimated metamorphic peak conditions of ~ 560–580 °C and 5.8–6.3 kbar at 654 ± 2 Ma, based on Lu–Hf isochron garnet–whole-rock age data. This episode represents an early orogenic thickening in the foreland as a response to the beginning of the transpressive convergent evolution of the belt. The monazite age of 614 ± 6 Ma (U–Pb SIMS) is interpreted as associated with post-exhumation magmatic activity in the foreland and suggests that the eastern Porongos Complex was exhumed sometime between ca. 660 and 615 Ma. The main metamorphic and deformation event in the Porongos Complex’s western region occurred at ~ 545–565 °C and 4.3–5.3 kbar at 563 ± 1 Ma (garnet–whole-rock Lu–Hf isochron age). The exhumation of this part of the foreland is dated using monazite crystallising during garnet breakdown and suggests retrograde metamorphism at 541 ± 7 Ma (U–Pb SIMS). The main metamorphic fabric in the Passo Feio Complex further to the west developed at 571 ± 2 Ma (garnet–whole-rock Lu–Hf isochron age) at 560–580 °C and 4.7–6.4 kbar. The western part of the Porongos Complex and the Passo Feio Complex have deformed at similar P–T conditions and apparent geothermal gradients at ca. 570–565 Ma. These regions record a second crustal thickening event in the Dom Feliciano Belt foreland and the orogenic front migration towards the west as a response to the onset of crustal thickening on the African side of this long-lived transpressive orogenic system.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the supplementary materials.

References

  • Aleinikoff JN, Schenck WS, Plank MO, Srogi LA, Fanning CM, Kamo SL, Bosbyshell H (2006) Deciphering igneous and metamorphic events in high-grade rocks of the Wilmington complex, Delaware: Morphology, cathodoluminescence and backscattered electron zoning, and SHRIMP U–Pb geochronology of zircon and monazite. Bull Geol Soc Am 118:39–64. https://doi.org/10.1130/B25659.1

    Article  Google Scholar 

  • Anczkiewicz R, Platt JP, Thirlwall MF, Wakabayashi J (2004) Franciscan subduction off to a slow start: evidence from high-precision Lu–Hf garnet ages on high grade-blocks. Earth Planet Sci Lett 225:147–161. https://doi.org/10.1016/j.epsl.2004.06.003

    Article  CAS  Google Scholar 

  • Arena KR, Hartmann LA, Lana C (2016) Evolution of Neoproterozoic ophiolites from the southern Brasiliano Orogen revealed by zircon U–Pb–Hf isotopes and geochemistry. Precambrian Res 285:299–314. https://doi.org/10.1016/j.precamres.2016.09.014

    Article  CAS  Google Scholar 

  • Arena KR, Hartmann LA, Lana C (2017) Tonian emplacement of ophiolites in the southern Brasiliano Orogen delimited by U–Pb–Hf isotopes of zircon from metasomatites. Gondwana Res 49:296–332. https://doi.org/10.1016/j.gr.2017.05.018

    Article  CAS  Google Scholar 

  • Arena KR, Hartmann LA, Lana C (2018) U–Pb–Hf isotopes and trace elements of metasomatic zircon delimit the evolution of neoproterozoic Capané ophiolite in the southern Brasiliano Orogen. Int Geol Rev 60:911–928. https://doi.org/10.1080/00206814.2017.1355269

    Article  Google Scholar 

  • Basei MAS, Peel E, Sánchez Bettucci L, Preciozzi F, Nutman AP (2011) The basement of the Punta del Este Terrane (Uruguay): an African Mesoproterozoic fragment at the eastern border of the South American Río de La Plata craton. Int J Earth Sci 100:289–304. https://doi.org/10.1007/s00531-010-0623-1

    Article  CAS  Google Scholar 

  • Basei M, Siga O, Masquelin H, Harara O, Reis Neto J, Preciozzi F (2000) The Dom Feliciano belt (Brazil-Uruguay)and its foreland (Rio de la Plata Craton): framework, tectonic evolution and correlations with similar terranes of southwestern Africa. In: Cordani UG (ed) Tectonic evolution of South America. 31st International Geological Congress, Rio de Janeiro, Brazil, pp 311–334

  • Basei MAS, Frimmel HE, Campos Neto MC, de Araujo CEG, de Castro NA, Passarelli CR (2018) The tectonic history of the Southern Adamastor Ocean Based on a Correlation of the Kaoko and Dom Feliciano Belts, pp 63–85. https://doi.org/10.1007/978-3-319-68920-3_3

  • Battisti MA, Bitencourt MF, De Toni GB, Nardi LVS, Konopásek J (2018) Metavolcanic rocks and orthogneisses from Porongos and Várzea do Capivarita complexes: A case for identification of tectonic interleaving at different crustal levels from structural and geochemical data in southernmost Brazil. J South Am Earth Sci 88:253–274. https://doi.org/10.1016/j.jsames.2018.08.009

    Article  Google Scholar 

  • Battisti MA, Bitencourt MF, Schmitt RS, Nardi LVS, Martil MMD, De Toni GB, Pimentel MM, Armstrong R, Konopásek J (2022) Reconstruction of a volcano-sedimentary environment shared by the Porongos and Várzea do Capivarita complexes at 790 Ma, Dom Feliciano Belt, southern Brazil. Precambrian Res 378:106774. https://doi.org/10.1016/j.precamres.2022.106774

    Article  CAS  Google Scholar 

  • Battisti MA, Bitencourt MF, Florisbal LM, Nardi LVS, Ackerman L, Sláma J, Padilha DF (2023) Unravelling major magmatic episodes from metamorphic sequences of the Dom Feliciano Belt central sector, southernmost Brazil—a comparative study of geochronology, elemental geochemistry, and Sr–Nd data. Precambrian Res. https://doi.org/10.1016/j.precamres.2022.106951

    Article  Google Scholar 

  • Baxter EF, Scherer EE (2013) Garnet geochronology: timekeeper of tectonometamorphic processes. Elements 9:433–438. https://doi.org/10.2113/gselements.9.6.433

    Article  CAS  Google Scholar 

  • Baxter EF, Caddick MJ, Dragovic B (2017) Garnet: a rock-forming mineral petrochronometer. Rev Min Geochem 83:469–533. https://doi.org/10.2138/rmg.2017.83.15

    Article  CAS  Google Scholar 

  • Bea F, Pereira MD, Stroh A (1994) Mineral/leucosome trace-element partitioning in a peraluminous migmatite (a laser ablation-ICP–MS study). Chem Geol 117:291–312. https://doi.org/10.1016/0009-2541(94)90133-3

    Article  CAS  Google Scholar 

  • Bitencourt MF (1983) Metamorfitos da região de Caçapava do Sul, RS—Geologia e Relações com o Corpo Granítico. Atas do 1° Simpósio Sul-Brasileiro Geol, pp 37–48

  • Bitencourt MF, Hartmann LA (1984a) Geoquímica das Rochas anfibolíticas da região de Caçapava do Sul-RS-Parte 1: caracterização geológica e petrográfica, elementos maiores e menores. An DO XXXIII Congr Bras Geol, pp 4266–4277

  • Bitencourt MF, Hartmann LA (1984b) Reconhecimento geoquimico dos xistos magnesianos da região do Passo Feio, Cacapava do Sul-RS. Congr Bras Geol (33 1984 Rio Janeiro, RJ) Anais Rio Janeiro SBG, 1984

  • Bitencourt MF, Nardi LVS (1993) Late- to Postcollisional Brasiliano magmatism in southernmost Brazil. An Acad Bras Cienc 65:3–16

    CAS  Google Scholar 

  • Bitencourt MF, Nardi LVS (2000) Tectonic setting and sources of magmatism related to the southern Brazilian shear belt. Rev Bras Geociencias 30:184–187

    Google Scholar 

  • Bitencourt MF, Nardi LVS, Florisbal LM, Heaman LM (2015) Geology, geochronology and petrogenesis of a Neoproterozoic, syntectonic sillimanite-muscovite-biotite granite from southernmost Brazil. In: B Abstr 8th Hutt symposium granites relat rocks, p 179

  • Boyton WV (1984) Geochemistry of rare earth elements: meteorite studies. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, New York, p 63

    Chapter  Google Scholar 

  • Chemale F (2000) Evolução Geológica do Escudo Sul-rio-grandense. In: Holz M, De Ros LF (eds) Geologia Do Rio Grande Do Sul. Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil, pp 13–52

    Google Scholar 

  • Chemale F, Philipp RP, Dussin IA, Formoso MLL, Kawashita K, Berttotti AL (2011) Lu–Hf and U–Pb age determination of Capivarita Anorthosite in the Dom Feliciano Belt, Brazil. Precambrian Res 186:117–126. https://doi.org/10.1016/j.precamres.2011.01.005

    Article  CAS  Google Scholar 

  • Chu NC, Taylor RN, Chavagnac V, Nesbitt RW, Boella RM, Milton JA, German CR, Bayon G, Burton K (2002) Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections. J Anal Spectrom 17:1567–1574. https://doi.org/10.1039/b206707b

    Article  CAS  Google Scholar 

  • Connolly JAD (2005) Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet Sci Lett 236:524–541. https://doi.org/10.1016/j.epsl.2005.04.033

    Article  CAS  Google Scholar 

  • Connolly JAD (2009) The geodynamic equation of state: what and how. Geochem Geophys Geosyst. https://doi.org/10.1029/2009GC002540

    Article  Google Scholar 

  • Costa AFU (1997) Teste e modelagem geofísica da estruturação das associações litotectônicas pré-cambrianas no Escudo Sul-Rio-Grandense. PhD thesis. Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil

  • Costa EO, Bitencourt MF, Tennholm T, Konopásek J, de Franceschi MT (2021) P–T–D evolution of the southeast Passo Feio Complex and the meaning of the Caçapava Lineament, Dom Feliciano Belt, southernmost Brazil. J South Am Earth Sci. https://doi.org/10.1016/j.jsames.2021.103465

    Article  Google Scholar 

  • De Toni GB, Bitencourt MF, Konopásek J, Martini A, Andrade PHS, Florisbal LM, Campos RS (2020a) Transpressive strain partitioning between the Major Gercino Shear Zone and the Tijucas Fold Belt, Dom Feliciano Belt, Santa Catarina, southern Brazil. J Struct Geol. https://doi.org/10.1016/j.jsg.2020.104058

    Article  Google Scholar 

  • De Toni GB, Bitencourt MF, Nardi LVS, Florisbal LM, Almeida BS, Geraldes M (2020b) Dom Feliciano Belt orogenic cycle tracked by its pre-collisional magmatism: the Tonian (ca. 800 Ma) Porto Belo Complex and its correlations in southern Brazil and Uruguay. Precambrian Res. https://doi.org/10.1016/j.precamres.2020.105702

    Article  Google Scholar 

  • De Toni GB, Bitencourt MF, Konopásek J, Battisti MA, Costa EO, Savian JF (2021) Autochthonous origin of the Encruzilhada Block, Dom Feliciano Belt, southern Brazil, based on aerogeophysics, image analysis and PT-paths. J Geodyn. https://doi.org/10.1016/j.jog.2021.101825

  • Engi M (2017) Petrochronology Based on REE-Minerals: Monazite, Allanite, Xenotime, Apatite BT-Reviews in Mineralogy & Geochemistry. Rev Min Geochem 83:365–418

    Article  CAS  Google Scholar 

  • Engi M, Lanari P, Kohn MJ (2017) Significant ages—an introduction to petrochronology. Petrochronology 83:1–12. https://doi.org/10.1515/9783110561890-002

    Article  CAS  Google Scholar 

  • Fernandes LAD, Tommazi A, Porcher CC (1992) Deformation patterns in the southern Brazilian branch of the Dom Feliciano Belt: a reappraisal. J South Am Earth Sci 5:77–96

    Article  Google Scholar 

  • Fernandes LAD, Menegat R, Costa AFU, Koester E, Porcher CC, Tommasi A, Kraemer G, Ramgrab GE, Camozzato E (1995) Evolução Tectônica Do Cinturão Dom Feliciano No Escudo Sul-Rio-Grandense: Parte Ii-Uma Contribuição a Partir Das Assinaturas Geofísicas. Rev Bras Geociências 25:375–384. https://doi.org/10.25249/0375-7536.1995375384

  • Fossen H, Cavalcante GCG, Pinheiro RVL, Archanjo CJ (2019) Deformation–progressive or multiphase? J Struct Geol 125:82–99. https://doi.org/10.1016/j.jsg.2018.05.006

    Article  Google Scholar 

  • Fragoso-Cesar ARS, Figueiredo MCH, Soliani Jr E, Faccini UF (1986) O Batólito Pelotas (Proterozóico Superior/Eopaleozóico) no escudo do Rio Grande do Sul. XXXIV Congr Bras Geol 1321–1342.

  • Franz L, Romer RL, Dingeldey DP (1999) Diachronous Pan-African granulite-facies metamorphism (650 Ma and 550 Ma) in the Kaoko belt, NW Namibia. Eur J Mineral 11:167–180. https://doi.org/10.1127/ejm/11/1/0167

    Article  CAS  Google Scholar 

  • Fraser G, Ellis D, Eggins S (1997) Zirconium abundance in granulite-facies minerals, with implications for zircon geochronology in high-grade rocks. Geology 25:607–610. https://doi.org/10.1130/0091-7613(1997)025%3c0607:ZAIGFM%3e2.3.CO;2

    Article  CAS  Google Scholar 

  • Frimmel H, Frank W (1998) Neoproterozoic tectono-thermal evolution of the Gariep Belt and its basement, Namibia and South Africa. Precambrian Res 90:1–28. https://doi.org/10.1016/S0301-9268(98)00029-1

    Article  CAS  Google Scholar 

  • Fuhrman ML, Lindsley DH (1988) Ternary-feldspar modeling and thermometry. Am Min 73:201–215

    CAS  Google Scholar 

  • Gahlan H, Azer M, Asimow P, Al-Kahtany K (2016) Late Ediacaran post-collisional A-type syenites with shoshonitic affinities, northern Arabian-Nubian Shield: a possible mantle-derived A-type magma. Arab J Geosci. https://doi.org/10.1007/s12517-016-2629-x

    Article  Google Scholar 

  • Gasser D, Jeřábek P, Faber C, Stünitz H, Menegon L, Corfu F, Erambert M, Whitehouse MJ (2015) Behaviour of geochronometers and timing of metamorphic reactions during deformation at lower crustal conditions: phase equilibrium modelling and U–Pb dating of zircon, monazite, rutile and titanite from the Kalak Nappe Complex, northern Norway. J Metamorph Geol 33:513–534. https://doi.org/10.1111/jmg.12131

    Article  CAS  Google Scholar 

  • Goscombe B, Gray DR (2007) The Coastal Terrane of the Kaoko Belt, Namibia: Outboard arc-terrane and tectonic significance. Precambrian Res 155:139–158. https://doi.org/10.1016/j.precamres.2007.01.008

    Article  CAS  Google Scholar 

  • Goscombe BD, Gray DR (2008) Structure and strain variation at mid-crustal levels in a transpressional orogen: A review of Kaoko Belt structure and the character of West Gondwana amalgamation and dispersal. Gondwana Res 13:45–85. https://doi.org/10.1016/j.gr.2007.07.002

    Article  Google Scholar 

  • Goscombe B, Gray D, Armstrong R, Foster DA, Vogl J (2005) Event geochronology of the Pan-African Kaoko Belt, Namibia. Precambrian Res 140:103.e1-103.e41. https://doi.org/10.1016/j.precamres.2005.07.003

    Article  CAS  Google Scholar 

  • Gray DR, Foster DA, Meert JG, Goscombe BD, Armstrong R, Trouw RAJ, Passchier CW (2008) A Damara orogen perspective on the assembly of southwestern Gondwana. In: Pankhurst RJ, Trouw RAJ, Brito Neves BB, de Wit MJ (eds) West Gondwana: Pre-Cenozoic Correlations Across the South Atlantic Region, vol 294. Geological Society, London, Special Publications, pp 257–278

  • Gregory TR, Bitencourt MF, Nardi LVS, Florisbal LM, Chemale F (2015) Geochronological data from TTG-type rock associations of the Arroio dos Ratos Complex and implications for crustal evolution of southernmost Brazil in Paleoproterozoic times. J South Am Earth Sci 57:49–60. https://doi.org/10.1016/j.jsames.2014.11.009

    Article  CAS  Google Scholar 

  • Gross AOMS, Porcher CC, Fernandes LAD, Koester E (2006) Neoproterozoic low-pressure/high-temperature collisional metamorphic evolution in the Varzea do Capivarita Metamorphic Suite, SE Brazil: Thermobarometric and Sm/Nd evidence. Precambrian Res 147:41–64. https://doi.org/10.1016/j.precamres.2006.02.001

    Article  CAS  Google Scholar 

  • Gross AOMS, Droop GTR, Porcher CC, Fernandes LAD (2009) Petrology and thermobarometry of mafic granulites and migmatites from the Chafalote Metamorphic Suite: New insights into the Neoproterozoic P–T evolution of the Uruguayan—Sul-Rio-Grandense shield. Precambrian Res 170:157–174. https://doi.org/10.1016/j.precamres.2009.01.011

    Article  CAS  Google Scholar 

  • Gruber L, Porcher CC, Lenz C, Fernandes LAD (2011) Proveniência de metassedimentos das sequências arroio Areião, Cerro Cambará e quartzo milonitos no Complexo Metamórfico Porongos, Santana da Boa Vista, RS. Pesqui Em Geociencias 38:205–223

    Article  Google Scholar 

  • Gruber L, Porcher CC, Koester E, Bertotti, AL, Lenz, C, Fernandes LAD, Remus, MVD (2016) Isotope geochemistry and geochronology of syn-depositional volcanism in Porongos Metamorphic Complex, Santana da Boa Vista antiform, Dom Feliciano Belt, Brazil: onset of an 800 ma continental arc. J Sediment Environ. https://doi.org/10.12957/jse.2016.22722

  • Hacker B, Kylander-Clark A, Holder R (2019) REE partitioning between monazite and garnet: Implications for petrochronology. J Metamorph Geol 37:227–237. https://doi.org/10.1111/jmg.12458

    Article  CAS  Google Scholar 

  • Hagen-Peter G, Cottle JM, Smit M, Cooper AF (2016) Coupled garnet Lu–Hf and monazite U–Pb geochronology constrain early convergent margin dynamics in the Ross orogen, Antarctica. J Metamorph Geol 34:293–319. https://doi.org/10.1111/jmg.12182

    Article  CAS  Google Scholar 

  • Hartmann LA, Leite JAD, Da Silva LC, Remus MVD, McNaughton NJ, Groves DI, Fletcher IR, Santos JOS, Vasconcellos MAZ (2000) Advances in SHRIMP geochronology and their impact on understanding the tectonic and metallogenic evolution of southern Brazil. Aust J Earth Sci 47:829–844. https://doi.org/10.1046/j.1440-0952.2000.00815.x

    Article  CAS  Google Scholar 

  • Hartmann LA, Santos JOS, Leite JAD, Porcher CC, Mcnaughton NJ (2003) Metamorphic evolution and U-Pb zircon SHRIMP geochronology of the Belizário ultramafic amphibolite, Encantadas Complex, southernmost Brazil. An Acad Bras Cienc 75:393–403. https://doi.org/10.1590/S0001-37652003000300010

    Article  CAS  Google Scholar 

  • Heine C, Zoethout J, Müller RD (2013) Kinematics of the South Atlantic rift. Solid Earth 4:215–253. https://doi.org/10.5194/se-4-215-2013

    Article  Google Scholar 

  • Hermann J, Rubatto D (2003) Relating zircon and monazite domains to garnet growth zones: Age and duration of granulite facies metamorphism in the Val Malenco lower crust. J Metamorph Geol 21:833–852. https://doi.org/10.1046/j.1525-1314.2003.00484.x

    Article  CAS  Google Scholar 

  • Hoerlle GS, Remus MVD, Dani N (2022) Metamafic dyke and sill swarms in the Dom Feliciano Belt: Insights for post-collisional strike-slip tectonics and fluid-assisted metamorphism. Precambrian Res 383:106906. https://doi.org/10.1016/j.precamres.2022.106906

    Article  CAS  Google Scholar 

  • Höfig DF, Marques JC, Basei MAS, Giusti RO, Kohlrausch C, Frantz JC (2018) Detrital zircon geochronology (U–Pb LA–ICP–MS) of syn-orogenic basins in SW Gondwana: New insights into the Cryogenian-Ediacaran of Porongos Complex, Dom Feliciano Belt, southern Brazil. Precambrian Res 306:189–208. https://doi.org/10.1016/j.precamres.2017.12.031

    Article  CAS  Google Scholar 

  • Holland TJB, Powell R (2011) An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J Metamorph Geol 29:333–383. https://doi.org/10.1111/j.1525-1314.2010.00923.x

    Article  CAS  Google Scholar 

  • Hueck M, Oyhantçabal P, Philipp RP, Basei MAS, Siegesmund S (2018) The Dom Feliciano Belt in Southern Brazil and Uruguay, pp 267–302. https://doi.org/10.1007/978-3-319-68920-3_11

  • Hueck M, Oriolo S, Basei MAS, Oyhantçabal P, Heller BM, Wemmer K, Siegesmund S (2022) Archean to early Neoproterozoic crustal growth of the southern South American Platform and its wide-reaching “African” origins. Precambrian Res. https://doi.org/10.1016/j.precamres.2021.106532

    Article  Google Scholar 

  • Johnson TE, Clark C, Taylor RJM, Santosh M, Collins AS (2015) Prograde and retrograde growth of monazite in migmatites: An example from the Nagercoil Block, southern India. Geosci Front 6:373–387. https://doi.org/10.1016/j.gsf.2014.12.003

    Article  CAS  Google Scholar 

  • Jost H, Bitencourt MF (1980) Estratigrafia e tectônica de uma fração da Faixa de Dobramentos Tijucas no Rio Grande do Sul. Acta Geol Leop 11:27–59

    Google Scholar 

  • Jweda J, Bolge L, Class C, Goldstein SL (2016) High Precision Sr–Nd–Hf–Pb Isotopic Compositions of USGS Reference Material BCR-2. Geostand Geoanalytical Res 40:101–115. https://doi.org/10.1111/j.1751-908X.2015.00342.x

    Article  CAS  Google Scholar 

  • Kirkland CL, Whitehouse MJ, Slagstad T (2009) Fluid-assisted zircon and monazite growth within a shear zone: a case study from Finnmark, Arctic Norway. Contrib Mineral Petrol 158:637–657. https://doi.org/10.1007/s00410-009-0401-x

    Article  CAS  Google Scholar 

  • Knijnik DB (2018) Geocronologia U–Pb e geoquímica isotópica Sr–Nd dos granitoides sintectônicos às zonas de cisalhamento transcorentes Quitéria Serra do Erval e Dorsal de Canguçu, Rio Grande do Sul, Brasil. PhD thesis. Universidade Federal do Rio Grande do Sul, Porto Alegre—RS. http://hdl.handle.net/10183/182067

  • Koester E, Porcher CC, Pimentel MM, Fernandes LAD, Vignol-Lelarge ML, Oliveira LD, Ramos RC (2016) Further evidence of 777 Ma subduction-related continental arc magmatism in Eastern Dom Feliciano Belt, southern Brazil: The Chácara das Pedras Orthogneiss. J South Am Earth Sci 68:155–166. https://doi.org/10.1016/j.jsames.2015.12.006

    Article  CAS  Google Scholar 

  • Kohn MJ (2017) Titanite petrochronology. Rev Mineral Geochem 83:419–441. https://doi.org/10.2138/rmg.2017.83.13

    Article  CAS  Google Scholar 

  • Konopásek J, Kröner S, Kitt SL, Passchier CW, Kröner A (2005) Oblique collision and evolution of large-scale transcurrent shear zones in the Kaoko belt, NW Namibia. Precambrian Res 136:139–157. https://doi.org/10.1016/j.precamres.2004.10.005

    Article  CAS  Google Scholar 

  • Konopásek J, Košler J, Tajčmanová L, Ulrich S, Kitt SL (2008) Neoproterozoic igneous complex emplaced along major tectonic boundary in the Kaoko Belt (NW Namibia): Ion probe and LA–ICP–MS dating of magmatic and metamorphic zircons. J Geol Soc Lond 165:153–165. https://doi.org/10.1144/0016-76492006-192

    Article  Google Scholar 

  • Konopásek J, Janoušek V, Oyhantçabal P, Sláma J, Ulrich S (2018) Did the circum-Rodinia subduction trigger the Neoproterozoic rifting along the Congo-Kalahari Craton margin? Int J Earth Sci 107:1859–1894. https://doi.org/10.1007/s00531-017-1576-4

    Article  CAS  Google Scholar 

  • Konopásek J, Anczkiewicz R, Jeřábek P, Corfu F, Žáčková E (2019) Chronology of the saxothuringian subduction in the west Sudetes (Bohemian massif, Czech Republic and Poland). J Geol Soc Lond 176:492–504. https://doi.org/10.1144/jgs2018-173

    Article  CAS  Google Scholar 

  • Konopásek J, Cavalcante C, Fossen H, Janoušek V (2020) Adamastor—An ocean that never existed? Earth-Sci Rev 205:103201. https://doi.org/10.1016/j.earscirev.2020.103201

    Article  Google Scholar 

  • Lanari P, Engi M (2017) Local bulk composition effects on metamorphic mineral assemblages. Rev Min Geochem 83:55–102

    Article  CAS  Google Scholar 

  • Larsen RB (2002) The distribution of rare-earth elements in K-feldspar as an indicator of petrogenetic processes in granitic pegmatites: examples from two pegmatite fields in southern Norway. Can Mineral 40:137–151. https://doi.org/10.2113/gscanmin.40.1.137

    Article  CAS  Google Scholar 

  • Lee D (1999) Hafnium Isotope Stratigraphy of Ferromanganese Crusts. Science (80–) 285:1052–1054. https://doi.org/10.1126/science.285.5430.1052

    Article  CAS  Google Scholar 

  • Leite JAD, Hartman LOA, McNaughton NJ, Chemale F (1998) SHRIMP U/Pb zircon geochronology of neoproterozoic juvenile and crustal-reworked terranes in southernmost brazil. Int Geol Rev 40:688–705. https://doi.org/10.1080/00206819809465232

    Article  Google Scholar 

  • Leite JAD, Hartmann LA, Fernandes LAD, McNaughton NJ, Soliani Ê Jr, Koester E, Santos JOS, Vasconcellos MAZ (2000) Zircon U–Pb SHRIMP dating of gneissic basement of the Dom Feliciano Belt, southernmost Brazil. J South Am Earth Sci 13:739–750. https://doi.org/10.1016/S0895-9811(00)00058-4

    Article  Google Scholar 

  • Lenz C (2006) Evolução metamórfica dos metapelitos da Antiforme Serra dos Pedrosas: condições e idades do metamorfismo. Master’s thesis. Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil, p 111. http://hdl.handle.net/10183/8520

  • Lena LO, Pimentel MM, Philipp RP, Armstrong R, Sato K (2014) The evolution of the Neoproterozoic São Gabriel juvenile terrane, southern Brazil based on high spatial resolution U–Pb ages and δ18O data from detrital zircons. Precambrian Res 247:126–138. https://doi.org/10.1016/j.precamres.2014.03.010

    Article  CAS  Google Scholar 

  • Lenz C, Fernandes LAD, McNaughton NJ, Porcher CC, Masquelin H (2011) U–Pb SHRIMP ages for the Cerro Bori Orthogneisses, Dom Feliciano Belt in Uruguay: evidences of a ∼ 800 Ma magmatic and ∼ 650 Ma metamorphic event. Precambrian Res 185:149–163. https://doi.org/10.1016/j.precamres.2011.01.007

    Article  CAS  Google Scholar 

  • Lopes CG, Pimentel MM, Philipp RP, Gruber L, Armstrong R, Junges S (2015) Provenance of the Passo Feio Complex, Dom Feliciano Belt: Implications for the age of supracrustal rocks of the São Gabriel Arc, southern Brazil. J South Am Earth Sci 58:9–17. https://doi.org/10.1016/j.jsames.2014.11.004

    Article  CAS  Google Scholar 

  • Marques JC, Roisenberg A, Jost H, Frantz JC, Teixeira RS (2003) Geologia e geoquímica das rochas metaultramáficas da Antiforme Capané, suíte metamórfica Porongos, RS. Rev Bras Geociências 33:83–94

    Article  Google Scholar 

  • Martil MMD (2016) O magmatismo de arco continental pré-colisional (790 ma) e a reconstituição espaço-temporal do regime transpressivo (650 ma) no Complexo Várzea Do Capivarita, Sul da Província Mantiqueira. PhD thesis. Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil. http://hdl.handle.net/10183/149194

  • Martil MMD, de Bitencourt MF, Nardi LVS, da Schmitt RS, Weinberg R (2017) Pre-collisional, Tonian (ca. 790 Ma) continental arc magmatism in southern Mantiqueira Province, Brazil: geochemical and isotopic constraints from the Várzea do Capivarita Complex. Lithos 274–275:39–52. https://doi.org/10.1016/j.lithos.2016.11.011

    Article  CAS  Google Scholar 

  • Nardi LVS, de Bitencourt MF (2007) Magmatismo Granítico e Evolução Crustal no Sul do Brasil. 50 anos Geol-Inst Geociências da Univ Fed do Rio Gd do Sul 1, pp 125–141

  • Oliveira CHE, Chemale F, Jelinek AR, Bicca MM, Philipp RP (2014) U–Pb and Lu–Hf isotopes applied to the evolution of the late to post-orogenic transtensional basins of the Dom Feliciano Belt, Brazil. Precambrian Res 246:240–255. https://doi.org/10.1016/j.precamres.2014.03.008

    Article  CAS  Google Scholar 

  • Oriolo S, Oyhantçabal P, Wemmer K, Heidelbach F, Pfänder J, Basei MAS, Hueck M, Hannich F, Sperner B, Siegesmund S (2016) Shear zone evolution and timing of deformation in the Neoproterozoic transpressional Dom Feliciano Belt, Uruguay. J Struct Geol 92:59–78. https://doi.org/10.1016/j.jsg.2016.09.010

    Article  Google Scholar 

  • Oriolo S, Oyhantçabal P, Wemmer K, Siegesmund S (2017) Contemporaneous assembly of Western Gondwana and final Rodinia break-up: implications for the supercontinent cycle. Geosci Front 8:1431–1445. https://doi.org/10.1016/j.gsf.2017.01.009

    Article  Google Scholar 

  • Oyhantçabal P, Siegesmund S, Wemmer K, Presnyakov S, Layer P (2009) Geochronological constraints on the evolution of the southern Dom Feliciano Belt (Uruguay). J Geol Soc Lond 166:1075–1084. https://doi.org/10.1144/0016-76492008-122

    Article  CAS  Google Scholar 

  • Padilha DF, de Bitencourt MF, Nardi LVS, Florisbal LM, Reis C, Geraldes M, Almeida BS (2019) Sources and settings of Ediacaran post-collisional syenite-monzonite-diorite shoshonitic magmatism from southernmost Brazil. Lithos. https://doi.org/10.1016/j.lithos.2019.06.004

    Article  Google Scholar 

  • Paim PSG, Chemale Junior F, Wildner W (2014) Estágios Evolutivos Da Bacia Do Camaquã (Rs). Ciência e Nat 36:183–193. https://doi.org/10.5902/2179460X13748

    Article  Google Scholar 

  • Patchett PJ, Tatsumoto M (1980) Hafnium isotope variations in oceanic basalts. Geophys Res Lett 1980:1

    Google Scholar 

  • Peel E, Sánchez L, Angelo M, Basei S (2018) Geology and geochronology of Paso del Dragón Complex (northeastern Uruguay): implications on the evolution of the Dom Feliciano Belt (Western Gondwana). J South Am Earth Sci 85:250–262. https://doi.org/10.1016/j.jsames.2018.05.009

    Article  CAS  Google Scholar 

  • Percival JJ, Konopásek J, Eiesland R, Sláma J, de Campos RS, Battisti MA, de Bitencourt MF (2021) Pre-orogenic connection of the foreland domains of the Kaoko-Dom Feliciano–Gariep orogenic system. Precambrian Res 354:106060. https://doi.org/10.1016/j.precamres.2020.106060

    Article  CAS  Google Scholar 

  • Percival JJ, Konopásek J, Anczkiewicz R, Ganerød M, Sláma J, Campos RS, Bitencourt MF (2022) Tectono-metamorphic evolution of the Northern Dom Feliciano Belt Foreland, Santa Catarina, Brazil: implications for models of subduction-driven orogenesis. Tectonics. https://doi.org/10.1029/2021TC007014

    Article  Google Scholar 

  • Percival JJ, Konopásek J, Oyhantçabal P, Sláma J, Anczkiewicz R (2023) Garnet growth and mineral geochronology constrains the diachronous Neoproterozoic convergent evolution of the southern Dom Feliciano Belt, Uruguay. J Metamorph Geol. https://doi.org/10.1002/jmg.12734

    Article  Google Scholar 

  • Pertille J, Hartmann LA, Philipp RP (2015a) Zircon U–Pb age constraints on the Paleoproterozoic sedimentary basement of the Ediacaran Porongos Group, Sul-Riograndense Shield, southern Brazil. J South Am Earth Sci 63:334–345. https://doi.org/10.1016/j.jsames.2015.08.005

    Article  CAS  Google Scholar 

  • Pertille J, Hartmann LA, Philipp RP, Petry TS, de Carvalho LC (2015b) Origin of the Ediacaran Porongos Group, Dom Feliciano Belt, southern Brazilian Shield, with emphasis on whole rock and detrital zircon geochemistry and U–Pb, Lu–Hf isotopes. J South Am Earth Sci 64:69–93. https://doi.org/10.1016/j.jsames.2015.09.001

    Article  CAS  Google Scholar 

  • Pertille J, Hartmann LA, Santos JOS, McNaughton NJ, Armstrong R (2017) Reconstructing the Cryogenian-Ediacaran evolution of the Porongos fold and thrust belt, Southern Brasiliano Orogen, based on Zircon U–Pb–Hf–O isotopes. Int Geol Rev 59:1532–1560. https://doi.org/10.1080/00206814.2017.1285257

    Article  Google Scholar 

  • Philipp RP, Machado R (2002) O magmatismo granítico Neoproterozóico do Batólito Pelotas no sul do Brasil: novos dados e revisão da geocronologia regional. Rev Bras Geociencias 32:277–290

    Article  Google Scholar 

  • Philipp RP, Lusa M, Nardi LVS (2008) Petrology of dioritic, tonalitic and trondhjemitic gneisses from Encantadas Complex, Santana da Boa Vista, southernmost Brazil: paleoproterozoic continental-arc magmatism. An Acad Bras Cienc 80:735–748. https://doi.org/10.1590/S0001-37652008000400013

    Article  Google Scholar 

  • Philipp RP, Bom FM, Pimentel MM, Junges SL, Zvirtes G (2016a) SHRIMP U-Pb age and high temperature conditions of the collisional metamorphism in the Várzea do Capivarita Complex: Implications for the origin of Pelotas Batholith, Dom Feliciano Belt, southern Brazil. J South Am Earth Sci 66:196–207. https://doi.org/10.1016/j.jsames.2015.11.008

    Article  CAS  Google Scholar 

  • Philipp RP, Pimentel MM, Chemale F Jr (2016b) Tectonic evolution of the Dom Feliciano Belt in Southern Brazil: geological relationships and U–Pb geochronology. Braz J Geol 46:83–104. https://doi.org/10.1590/2317-4889201620150016

    Article  Google Scholar 

  • Philipp RP, Pimentel MM, Basei MAS, Salvi M, De Lena LOF, Vedana LA, Gubert ML, Lopes CG, Laux JH, Camozzato E (2021) U-Pb detrital zircon dating applied to metavolcano-sedimentary complexes of the São Gabriel Terrane: new constraints on the evolution of the Dom Feliciano Belt. J South Am Earth Sci 110:103409. https://doi.org/10.1016/j.jsames.2021.103409

    Article  CAS  Google Scholar 

  • Porada H (1979) The Damara-Ribeira orogen of the Pan-African–Brasiliano cycle in Namibia (southwest Africa) and Brazil as interpreted in terms of continental collision. Tectonophysics 57:237–265. https://doi.org/10.1016/0040-1951(79)90150-1

    Article  Google Scholar 

  • Ramos VA, Cingolani C, Junior FC, Naipauer M, Rapalini A (2017) The Malvinas (Falkland) Islands revisited: the tectonic evolution of southern Gondwana based on U–Pb and Lu–Hf detrital zircon isotopes in the Paleozoic cover. J South Am Earth Sci 76:320–345. https://doi.org/10.1016/j.jsames.2016.12.013

    Article  CAS  Google Scholar 

  • Rapela CW, Fanning CM, Casquet C, Pankhurst RJ, Spalletti L, Poiré D, Baldo EG (2011) The Rio de la Plata craton and the adjoining Pan-African/brasiliano terranes: their origins and incorporation into south-west Gondwana. Gondwana Res 20:673–690. https://doi.org/10.1016/j.gr.2011.05.001

    Article  CAS  Google Scholar 

  • Regis D, Warren CJ, Mottram CM, Roberts NMW (2016) Using monazite and zircon petrochronology to constrain the P–T–t evolution of the middle crust in the Bhutan Himalaya. J Metamorph Geol 34:617–639. https://doi.org/10.1111/jmg.12196

    Article  CAS  Google Scholar 

  • Remus MVD, Hartmann LA, McNaughton NJ, Groves DI, Fletcher IR (2000) The link between hydrothermal epigenetic copper mineralization and the Cacapava Granite of the Brasiliano cycle in southern Brazil. J South Am Earth Sci 13:191–216. https://doi.org/10.1016/S0895-9811(00)00017-1

    Article  Google Scholar 

  • Rivera CB (2016) Construção do maciço sienítico Piquiri (609 a 683 Ma) por colocação sucessiva de pulsos de magma ultrapotássico e shoshonítico sob extensão no Escudo sul-rio-grandense. PhD thesis. Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil. http://hdl.handle.net/10183/201719

  • Rocha BC, Moraes R, Möller A, Cioffi CR, Jercinovic MJ (2017) Timing of anatexis and melt crystallization in the Socorro-Guaxupé Nappe, SE Brazil: insights from trace element composition of zircon, monazite and garnet coupled to U–Pb geochronology. Lithos 277:337–355. https://doi.org/10.1016/j.lithos.2016.05.020

    Article  CAS  Google Scholar 

  • Rubatto D, Hermann J, Buick IS (2006) Temperature and bulk composition control on the growth of monazite and zircon during low-pressure anatexis (Mount Stafford, Central Australia). J Petrol 47:1973–1996. https://doi.org/10.1093/petrology/egl033

    Article  CAS  Google Scholar 

  • Rubatto D, Chakraborty S, Dasgupta S (2013) Timescales of crustal melting in the Higher Himalayan Crystallines (Sikkim, Eastern Himalaya) inferred from trace element-constrained monazite and zircon chronology. Contrib Mineral Petrol 165:349–372. https://doi.org/10.1007/s00410-012-0812-y

    Article  CAS  Google Scholar 

  • Saalmann K, Hartmann LA, Remus MVD (2005) Tectonic evolution of two contrasting schist belts in southernmost Brazil: a plate tectonic model for the brasiliano orogeny. Int Geol Rev 4712:1234–1259. https://doi.org/10.2747/0020-6814.47.12.1234

    Article  Google Scholar 

  • Saalmann K, Remus MVD, Hartmann LA (2006) Structural evolution and tectonic setting of the Porongos belt, southern Brazil. Geol Mag 143:59. https://doi.org/10.1017/S0016756805001433

    Article  CAS  Google Scholar 

  • Saalmann K, Gerdes A, Lahaye Y, Hartmann LA, Remus MVD, Läufer A (2011) Multiple accretion at the eastern margin of the Rio de la Plata craton: the prolonged Brasiliano orogeny in southernmost Brazil. Int J Earth Sci 100:355–378. https://doi.org/10.1007/s00531-010-0564-8

    Article  Google Scholar 

  • Saalmann K, Hartmann LA, Remus MVD (2007) The assembly of West Gondwana—the view from the Rio de la Plata craton, in: Special Paper 423: The Evolution of the Rheic Ocean: From Avalonian-Cadomian Active Margin to Alleghenian-Variscan Collision. Geological Society of America, pp 1–26. https://doi.org/10.1130/2007.2423(01)

  • Sbaraini S, Raposo BMI, de Bitencourt MF, Rocha Tomé C (2020) Magnetic fabrics of the neoproterozoic piquiri syenite massif (Southernmost Brazil): implications for 3D geometry and emplacement. J Geodyn 134:101691

    Article  Google Scholar 

  • Schaltegger U, Davies JHFL (2017) Petrochronology of zircon and baddeleyite in igneous rocks: reconstructing magmatic processes at high temporal resolution. Rev Mineral Geochem 83:297–328. https://doi.org/10.2138/rmg.2017.83.10

    Article  CAS  Google Scholar 

  • Soret M, Larson KP, Cottle JM, Smit M, Johnson A, Shrestha S, Ali A, Faisal S (2019) Mesozoic to Cenozoic tectono-metamorphic history of the South Pamir-Hindu Kush (Chitral, NW Pakistan): insights from phase equilibria modelling, and garnet–monazite petrochronology. J Metamorph Geol 37:633–666. https://doi.org/10.1111/jmg.12479

    Article  CAS  Google Scholar 

  • Söderlund U, Patchett PJ, Vervoort JD, Isachsen CE (2004) The 176Lu decay constant determined by Lu–Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth Planet Sci Lett 219:311–324. https://doi.org/10.1016/S0012-821X(04)00012-3

    Article  CAS  Google Scholar 

  • Stevens LM, Baldwin JA, Cottle JM, Kylander-Clark ARC (2015) Phase equilibria modelling and LASS monazite petrochronology: P–T–t constraints on the evolution of the Priest River core complex, northern Idaho. J Metamorph Geol 33:385–411. https://doi.org/10.1111/jmg.12125

    Article  CAS  Google Scholar 

  • Stuwe K (1997) Effective bulk composition changes due to cooling: a model predicting complexities in retrograde reaction textures. Contrib Mineral Petrol 129:43–52

    Article  CAS  Google Scholar 

  • Thirlwall MF, Anczkiewicz R (2004) Multidynamic isotope ratio analysis using MC–ICP–MS and the causes of secular drift in Hf, Nd and Pb isotope ratios. Int J Mass Spectrom 235:59–81. https://doi.org/10.1016/j.ijms.2004.04.002

    Article  CAS  Google Scholar 

  • Ulrich S, Konopásek J, Jeřábek P, Tajčmanová L (2011) Transposition of structures in the Neoproterozoic Kaoko Belt (NW Namibia) and their absolute timing. Int J Earth Sci 100:415–429. https://doi.org/10.1007/s00531-010-0573-7

    Article  Google Scholar 

  • Vieira DT, Koester E, Ramos RC, Porcher CC, D’Ávila Fernandes LA (2020) SHRIMP U-Pb zircon ages for the synkinematic magmatism in the Dorsal de Canguçu Transcurrent Shear Zone, Dom Feliciano Belt (Brazil): tectonic implications. J South Am Earth Sci 100:102603. https://doi.org/10.1016/j.jsames.2020.102603

    Article  CAS  Google Scholar 

  • Walczak K, Anczkiewicz R, Szczepański J, Rubatto D, Košler J (2017) Combined garnet and zircon geochronology of the ultra-high temperature metamorphism: constraints on the rise of the Orlica-Śnieżnik Dome, NE Bohemian Massif, SW Poland. Lithos 292–293:388–400. https://doi.org/10.1016/j.lithos.2017.09.013

    Article  CAS  Google Scholar 

  • Warren CJ, Greenwood LV, Argles TW, Roberts NMW, Parrish RR, Harris NBW (2019) Garnet-monazite rare earth element relationships in sub-solidus Metapelites: a case study from Bhutan. Geol Soc Spec Publ 478:145–166. https://doi.org/10.1144/SP478.1

    Article  Google Scholar 

  • Werle M, Hartmann LA, Queiroga GN, Lana C, Pertille J, Michelin CRL, Remus MVD, Roberts MP, Castro MP, Leandro CG, Savian JF (2020) Oceanic crust and mantle evidence for the evolution of Tonian-Cryogenian ophiolites, southern Brasiliano Orogen. Precambrian Res 351:105979. https://doi.org/10.1016/j.precamres.2020.105979

    Article  CAS  Google Scholar 

  • White RW, Powell R, Holland TJB, Johnson TE, Green ECR (2014) New mineral activity-composition relations for thermodynamic calculations in metapelitic systems. J Metamorph Geol 32:261–286. https://doi.org/10.1111/jmg.12071

    Article  CAS  Google Scholar 

  • Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187. https://doi.org/10.2138/am.2010.3371

    Article  CAS  Google Scholar 

  • Will TM, Gaucher C, Ling XX, Li XH, Li QL, Frimmel HE (2019) Neoproterozoic magmatic and metamorphic events in the Cuchilla Dionisio Terrane, Uruguay, and possible correlations across the South Atlantic. Precambrian Res 320:303–322. https://doi.org/10.1016/j.precamres.2018.11.004

    Article  CAS  Google Scholar 

  • Yakymchuk C, Clark C, White RW (2017) Phase relations, reaction sequences and petrochronology. Rev Min Geochem 83:13–53. https://doi.org/10.2138/rmg.2017.83.2

    Article  CAS  Google Scholar 

  • Zvirtes G, Philipp RP, Camozzato E, Guadagnin F (2017) Análise estrutural do Metagranito Capané, Complexo Porongos, Cachoeira do Sul, RS. Pesqui Geociências 44:5. https://doi.org/10.22456/1807-9806.78250

Download references

Acknowledgements

The authors acknowledge Coordenação de Aperfeiçoamento de Pessoal Docente for funding of the CAPES (Brazil)––Diku (Norway) cooperation program (CAPES––88881.117872/2016-01 and 88887.141226/2017–00, Diku––UTF-2018-CAPES-Diku/10004). M.B. acknowledges the Brazilian National Research Council (CNPq) for his PhD scholarship. J.K. acknowledges financial support from the Czech Science Foundation, Grant No. 18-24281S. J.S. was supported by the CAS institutional support RVO 67985831. Susan Drago, Denise Moreira Canarin and Pedro Sulzbach de Andrade are acknowledged for microprobe, lab work and fieldwork assistance, respectively. We thank Martin Whitehouse and Hee** Jeon for their support while using the NordSIMS ion probe in Stockholm, which is operated under Swedish Research Council infrastructure Grant 2021-00276 (this is a NordSIMS publication #749).

Author information

Authors and Affiliations

Authors

Contributions

Matheus Ariel Battisti: conceptualisation, investigation, formal analysis and writing––review and Editing. Jiří Konopásek: conceptualisation, investigation, formal analysis, writing––review and editing, resources and supervision. Maria de Fátima Bitencourt: conceptualisation, investigation, review and editing, resources and supervision. Jiří Sláma: formal analysis, methodology and review and editing. Jack James Percival: investigation, formal analysis and review and editing. Giuseppe Betino De Toni: investigation, formal analysis and review and editing. Stephanie Carvalho da Silva: investigation, formal analysis and review and editing. Elisa Oliveira da Costa: investigation and review and editing. Jakub Trubač: formal analysis and methodology.

Corresponding author

Correspondence to Matheus Ariel Battisti.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Electronic supplementary material

Appendix

Appendix

Lu–Hf isotope analysis

The Lu–Hf analyses were conducted at the Geological Institute of the Czech Academy of Sciences (chemistry) and Faculty of Science, Charles University (MC–ICP–MS). Garnet concentrates and whole-rock powders were weighted and mixed with the 176Lu–180Hf tracer solution. The samples were digested in closed 30 ml Savillex Teflon vials using combined acid attack (HF–HNO3–HCl). First, 0.5 ml HNO3 + 2 ml HF (concentrated acids) was added to each sample and left to stand cold in a closed vial for 3 h. Subsequently, the bombs were opened and warmed on the hotplate to 90 °C to evaporate Si and all acids. During this step, the major minerals are attacked by the acids, most of the Si evaporates with the excess HF and the acids used in the following step thus can attack any resistant minerals without being depleted by reaction with major silicate phases. After complete evaporation, the mixture of 1.5 ml HNO3 + 4.5 ml HF was added to the samples, left on a hotplate for 2 days at 160 °C and then evaporated to dryness. After that, the samples were treated three times with 2 ml of concentrated HNO3 and evaporated to dryness. Next, 1 ml of 6 M HCl was added and immediately dried down. Finally, 8 ml of 6 M HCl was added and left on a hotplate at 160 °C in a sealed beaker for 24 h. The sample was then evaporated to dryness, and 2 ml of 1 M HCl was added for subsequent column chemistry.

The ion exchange column chemistry follows closely that of Anczkiewicz et al. (2004), which is a down-scale modification of the original setup of Patchett and Tatsumoto (1980). The separation of Hf (+ Ti) and Lu (+ Yb and LREE) fractions is first carried out on a standard cation exchange column using AG50W–X8 resin (200–400 mesh size) and 1 M HCl–0.06 M HF (HFSE elution) and 2.5 M HCl (REE elution). The final purification of Hf from other HFSE and potentially interfering Lu and Yb takes place on a second column with Eichrom LN resin (50–100 µm) using a technique based on Lee (1999) employing the mixture of 2 M HCl–0.1 M. The same column is then used to purify Lu from other REEs and reduce Yb in the Lu cut using 4 M HCl.

All measurements of Lu and Hf fractions were carried out using a THERMO Neptune multi-collector (MC) ICP–MS in the labs of the Faculty of Science, Charles University in Prague. Hafnium isotopic compositions were analysed in a static mode using Faraday cups with the following configuration: L4––172Yb, L3––174Yb, L2––175Lu, L1––176Hf, C––177Hf, H1––178Hf, H2––179Hf, H3––180Hf, H4––182W. Samples were aspirated to the instrument in 0.5 M HNO3–0.25 M HF mixture using CETAC Aridus II desolvating nebuliser. The data acquisition procedure consisted of 40 integration cycles acquired over a period of ~ 6 min, followed by ~ 5 min of washout with a mixture of 1.2 M HNO3–0.5 M HF composition. The raw data were processed offline using an on-purpose-built calculation EXCEL spreadsheet. Repeated measurements of 50 ppb JMC–475 standards throughout analyses yield 176Hf/177Hf = 0.282158 ± 7 (2SE, n = 7), which is in agreement within error with the reference data (Chu et al. 2002). The spike strip** routine employing the ratio of 179Hf/177Hf iteratively deconvoluting to the natural value of 0.7325 (Patchett and Tatsumoto 1980) and exponential mass-bias correction were used to obtain Hf isotopic composition and Hf concentration of the spiked samples.

For Lu isotopic analyses, Faraday cup configuration was as follows: L3––171Yb, L2––172Yb, L1––173Yb, C––174Yb, H1––175Lu, H2––176Lu, H3––177Hf. The sample aspiration was identical to the Hf measurements, with the difference that HF-free acids were used for sample introduction (0.5 M HNO3) and washout (1.5 M HNO3). The data acquisition procedure consisted of 40 integration cycles acquired over a period of ~ 3 min, followed by 4 min of washout. The raw data were processed offline using an on-purpose-built calculation EXCEL spreadsheet. Repeated measurements of natural Lu and Yb standard solutions were carried out to check the accuracy of the isotopic ratio measurements. The mass-bias correction (exponential law) of the spiked 176Lu/175Lu ratio was done using the natural Yb present in the sample (reduced in the 3rd step of column chromatography to be ~ 1/10 of the amount of Lu to be suitable for mass bias correction while not causing excessive interference on 176Lu mass) and the true ratio of 174Yb/172Yb = 1.45198 (Thirlwall and Anczkiewicz 2004). The value of 176Lu/175Lu was then used to calculate the concentration of Lu in the samples. The accuracy of the method was checked by measurement of spiked aliquot of BCR–2 reference material, which gave 176Hf/177Hf = 0.282859 ± 11, Hf = 5.00 ppm and Lu = 0.514 ppm, which are in good agreement with published values of 0.282866 ± 11 (Jweda et al. 2016), 4.8 ± 0.2 and 0.51 ± 0.02 (U.S. Geological Survey Certificate of Analysis, online source), respectively.

U–Pb monazite dating methodology

The samples were processed through a rock crusher and a hammer mill. Monazite and garnet were separated using a Wilfley table, a Frantz™ isodynamic magnetic separator and heavy liquids in the laboratories of the Department of Geosciences at the UiT, The Arctic University of Norway in Tromsø. Subsequently, monazite grains were handpicked under a binocular microscope, and selected grains were mounted in one-inch epoxy discs. To identify internal microstructures and possible compositional zoning, backscattered electron (BSE) images of monazite grains were made by Zeiss Merlin Scanning Electron Microscope (SEM) housed at the Faculty of Health Sciences of the same university.

Monazite U–Th–Pb analyses by SIMS were performed on a Cameca IMS 1280 ion probe at NordSIMS laboratory hosted by the Swedish Museum of Natural History in Stockholm. Operating parameters concerning primary beam and mass resolution were similar to those used for zircon, broadly following the protocols described (Gasser et al. 2015). The principal difference from zircon is that the monazite analyses employed both a smaller entrance slit (30 µm instead of 75 µm) to limit the secondary beam intensity and a smaller energy slit (30 eV instead of 45 eV) together with a − 30 eV energy offset (applied via sample high voltage) on all the Pb, ThOx and UOx (where x = 0, 1 or 2) peaks of interest to minimise matrix differences in potentially chemically diverse monazite and eliminate a small ThNdO22+ interference on 204Pb identified in earlier monazite studies (e.g. Kirkland et al. 2009). Secondary beam centring and optimisation steps were performed as for zircon but using the CePO2+ matrix peak at nominal mass 203. U–Pb ratios were calibrated against a 425 Ma reference monazite from a metapelite of the Wilmington Complex, Delaware (sample 44,069, Aleinikoff et al. 2006), using a two-dimensional power law calibration approach, i.e. (Pb/U)true = f (Pb/U)meas, UO2/Umeas) based on measurement of these ratios in the reference monazite.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Battisti, M.A., Konopásek, J., Bitencourt, M.d. et al. Petrochronology of the Dom Feliciano Belt foreland in southernmost Brazil reveals two distinct tectonometamorphic events in the western central Kaoko–Dom Feliciano–Gariep orogen. Int J Earth Sci (Geol Rundsch) 113, 973–1004 (2024). https://doi.org/10.1007/s00531-024-02412-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-024-02412-y

Keywords

Navigation