Log in

Entropy minimization and domain adversarial training guided by label distribution similarity for domain adaptation

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

In domain adaptation, entropy minimization is widely used. However, entropy minimization will bring negative transfer when the pseudo-labels are inconsistent with the real labels. We hope to increase pseudo-label accuracy to counter negative transfer in entropy minimization. To this end, we introduce domain adversarial training into entropy minimization. Furthermore, we consider the misalignment caused by domain adversarial training under severe label shift. Therefore, we propose method called entropy minimization and domain adversarial training guided by label distribution similarity (EMALDS). Through domain adversarial training which focus more on class-aligned divergence, our method improves pseudo-label accuracy and reduce negative transfer in entropy minimization. Extensive experiments demonstrate the effectiveness and robustness of our proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are openly available in [9] at [https://engineering.case.edu/bearingdatacenter/download-data-file].

References

  1. Garcia, G.R., Michau, G., Ducoffe, M., Gupta, J.S., Fink, O.: Temporal signals to images: monitoring the condition of industrial assets with deep learning image processing algorithms. J. Risk Reliab. 236(4), 617–27 (2022)

    Google Scholar 

  2. Bhosale, Y.H., Patnaik, K.S.: Application of deep learning techniques in diagnosis of COVID-19 (coronavirus): a systematic review. Neural Process. Lett. (2022). https://doi.org/10.1007/s11063-022-11023-0

    Article  Google Scholar 

  3. Chen, F., Liu, L., Tang, B., Chen, B., **ao, W., Zhang, F.: A novel fusion approach of deep convolution neural network with auto-encoder and its application in planetary gearbox fault diagnosis. J. Risk Reliab. 235, 3–16 (2021)

    Google Scholar 

  4. **ao, S., Li, Y., Ye, Y., Chen, L., Pu, S., Zhao, Z., Shao, J., **ao, J.: Hierarchical temporal fusion of multi-grained attention features for video question answering. Neural Process. Lett. 52(2), 993–1003 (2020)

    Article  Google Scholar 

  5. Habimana, O., Li, Y., Li, R., Gu, X., Yu, G.: Sentiment analysis using deep learning approaches: an overview. Sci. China Inf. Sci. 63(1), 1–36 (2020)

    Article  Google Scholar 

  6. Madadi, Y., Seydi, V., Nasrollahi, K., Hosseini, R., Moeslund, T.B.: Deep visual unsupervised domain adaptation for classification tasks: a survey. IET Image Proc. 14(14), 3283–3299 (2020)

    Article  Google Scholar 

  7. Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.: Decaf: a deep convolutional activation feature for generic visual recognition. In: International conference on machine learning, PMLR, pp. 647–655 (2014)

  8. Ma, A., Li, J., Lu, K., Zhu, L., Shen, H.T.: Adversarial entropy optimization for unsupervised domain adaptation. IEEE Trans. Neural Netw. Learn. Syst. 33, 6263–6274 (2021)

    Article  MathSciNet  Google Scholar 

  9. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Unsupervised domain adaptation with residual transfer networks. In: Neural Information Processing Systems (2016)

  10. Wu, X., Zhang, S., Zhou, Q., Yang, Z., Zhao, C., Latecki, L.J.: Entropy minimization versus diversity maximization for domain adaptation. IEEE Trans. Neural Netw. Learn. Syst. (2021). https://doi.org/10.1109/TNNLS.2021.3110109

    Article  Google Scholar 

  11. Grandvalet, Y., Bengio, Y.: Semi-supervised learning by entropy minimization. In: Conférence francophone sur l'apprentissage automatique (2004)

  12. Vu, T.-H., Jain, H., Bucher, M., Cord, M., Pérez, P.: Advent: adversarial entropy minimization for domain adaptation in semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2517–2526 (2019)

  13. Prabhu, V., Khare, S., Kartik, D., Hoffman, J.: Sentry: selective entropy optimization via committee consistency for unsupervised domain adaptation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8558–8567 (2021)

  14. Morerio, P., Cavazza, J., Murino, V.: Minimal-entropy correlation alignment for unsupervised deep domain adaptation. ar**v preprint ar**v:1711.10288 (2017)

  15. Long, M., Cao, Z., Wang, J., Jordan, M.I.: Conditional adversarial domain adaptation. In: Neural Information Processing Systems (2017)

  16. Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M., Lempitsky, V.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2030–2096 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Tran, L., Sohn, K., Yu, X., Liu, X., Chandraker, M.: Gotta adapt’em all: joint pixel and feature-level domain adaptation for recognition in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2672–2681 (2019)

  18. Liu, X., Guo, Z., Li, S., **ng, F., You, J., Kuo, C.-C.J., El Fakhri, G., Woo, J.: Adversarial unsupervised domain adaptation with conditional and label shift: infer, align and iterate. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10367–10376 (2021)

  19. Ruicong, Z., Yu, B., Zhongtian, L., Qinle, W., Yonggang, L.: Unsupervised adversarial domain adaptive for fault detection based on minimum domain spacing. Adv. Mech. Eng. 14(3), 16878132221088648 (2022)

    Article  Google Scholar 

  20. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)

    Article  MathSciNet  Google Scholar 

  21. Li, B., Wang, Y., Che, T., Zhang, S., Zhao, S., Xu, P., Zhou, W., Bengio, Y., Keutzer, K.: Rethinking distributional matching based domain adaptation. ar**v preprint ar**v:2006.13352 (2020)

  22. Kouw, W.M., Loog, M.: An introduction to domain adaptation and transfer learning. ar**v preprint ar**v:1812.11806 (2018)

  23. Sugiyama, M., Kawanabe, M.: Machine learning in non-stationary environments: introduction to covariate shift adaptation. MIT Press (2012)

    Book  Google Scholar 

  24. Benamou, J.-D., Carlier, G., Cuturi, M., Nenna, L., Peyré, G.: Iterative Bregman projections for regularized transportation problems. SIAM J. Sci. Comput. 37(2), A1111–A1138 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gretton, A., Sriperumbudur, B.K., Sejdinovic, D., Strathmann, H., Balakrishnan, S., Pontil, M., Fukumizu, K.: Optimal kernel choice for large-scale two-sample tests. In: Neural Information Processing Systems (2012)

  26. Long, M., Cao, Y., Wang, J., Jordan, M.I.: Learning transferable features with deep adaptation networks. ar**v: Learning (2015)

  27. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International conference on machine learning, PMLR, pp. 214–223 (2017)

  28. Cheng, C., Zhou, B., Ma, G., Wu, D., Yuan, Y.: Wasserstein distance based deep adversarial transfer learning for intelligent fault diagnosis with unlabeled or insufficient labeled data. Neurocomputing 409, 35–45 (2020)

    Article  Google Scholar 

  29. Gong, R., Li, W., Chen, Y., Gool, L.V.: DLOW: Domain flow for adaptation and generalization, Cornell University-ar**v (2018)

  30. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7167–7176 (2017)

  31. Shimodaira, H.: Improving predictive inference under covariate shift by weighting the log-likelihood function. J. Stat. Plan. Inference 90, 227–244 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Bickel, S., Brückner, M., Scheffer, T.: Discriminative learning under covariate shift. J. Mach. Learn. Res. 10, 2137–2155 (2009)

    MathSciNet  MATH  Google Scholar 

  33. Vu, T.-H., Jain, H., Bucher, M., Cord, M., Pérez, P.: ADVENT: adversarial entropy minimization for domain adaptation in semantic segmentation. Vision and Pattern Recognition. ar**v: Computer (2018)

  34. Saito, K., Kim, D., Sclaroff, S., Darrell, T., Saenko, K.: Semi-supervised domain adaptation via minimax entropy. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8050–8058 (2019)

  35. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: International Conference on Machine Learning, PMLR, pp. 1180–1189 (2015)

  36. Ben-David, S., Blitzer, J., Crammer, K., Pereira, F.C.: Analysis of representations for domain adaptation. In: Neural Information Processing Systems (2006)

  37. Kurmi, V.K., Namboodiri, V.P.: Looking back at labels: a class based domain adaptation technique. In: 2019 International Joint Conference on Neural Networks (IJCNN), IEEE, pp. 1–8 (2019)

  38. Tang, H., Jia, K.: Discriminative adversarial domain adaptation. ar**v preprint ar**v:1911.12036 (2019)

  39. Jiang, X., Lao, Q., Matwin, S., Havaei, M.: Implicit class-conditioned domain alignment for unsupervised domain adaptation. In: International Conference on Machine Learning, PMLR, pp. 4816–4827 (2020)

  40. Wang, X., Li, L., Ye, W., Long, M., Wang, J.: Transferable attention for domain adaptation. Proc. AAAI Conf. Artif. Intell. 33, 5345–5352 (2019)

    Google Scholar 

  41. Loparo, K.: Case western reserve university bearing data center. Case Western Reserve University, Bearings Vibration Data Sets, pp. 22–28 (2012)

  42. Cao, Z., You, K., Long, M., Wang, J., Yang, Q.: Learning to transfer examples for partial domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2985–2994 (2019)

  43. Chen, X., Wang, S., Long, M., Wang, J.: Transferability vs. discriminability: batch spectral penalization for adversarial domain adaptation. In: International conference on machine learning, PMLR, pp. 1081–1090 (2019)

  44. Zhang, Y., Liu, T., Long, M., Jordan, M.: Bridging theory and algorithm for domain adaptation. In: International Conference on Machine Learning, PMLR, pp. 7404–7413 (2019)

  45. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. ar**v preprint ar**v:1710.09412 (2017)

  46. Saito, K., Yamamoto, S., Ushiku, Y., Harada, T.: Open set domain adaptation by backpropagation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 153–168 (2018)

  47. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

  48. Long, M., Cao, Y., Wang, J., Jordan, M.: Learning transferable features with deep adaptation networks. In: International Conference on Machine Learning, PMLR, pp. 97–105 (2015)

  49. **g, Z., Ding, Z., Li, W., Ogunbona, P.: Importance weighted adversarial nets for partial domain adaptation. In: IEEE (2018)

  50. Cao, Z., Ma, L., Long, M., Wang, J.: Partial adversarial domain adaptation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 135–150 (2018)

  51. Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: Computer vision-ECCV 2010: 11th European Conference on Computer Vision, Heraklion, Crete, Greece, September 5–11, 2010, Proceedings, Part IV 11, pp. 213–226. Springer, Cham (2010)

    Chapter  Google Scholar 

  52. Cao, Z., Long, M., Wang, J., Jordan, M.I.: Partial transfer learning with selective adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2724–2732 (2018)

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by FX and YB. Experimental code is completed by FX. Bl, ZH and LW are responsible for drawing and typesetting. The first draft of the manuscript was written by FX and revision is completed by YB. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Yu Bao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 More experiment details on 1797–1730 of 12k FanEnd fault for partial domain adaptation

See Table 6.

Table 6 Performance metrics on 1797–1730 of 12k FanEnd Fault for partial domain adaptation (ResNet-18)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, F., Bao, Y., Li, B. et al. Entropy minimization and domain adversarial training guided by label distribution similarity for domain adaptation. Multimedia Systems 29, 2281–2292 (2023). https://doi.org/10.1007/s00530-023-01106-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-023-01106-w

Keywords

Navigation